Monostori L., (2003), AI and machine learning techniques 
for managing complexity, changes and uncertainties in 
manufacturing,  Engineering  applications  of  artificial 
intelligence 16 (4) 277–291. 
Alfaro-Cortes E., Alfaro-Navarro J.-L., Gamez M., Garcıa 
N.,  (2020),  Using  random  forest  to  interpret  out-of-
control signals, Acta Polytech. Hung. 17 (6) 115–130. 
Zhang  X.,  Kano  M.,  Tani  M.,  Mori J.,  Harada  J.  Ise,  K., 
(2020), Prediction and causal analysis of defects in steel 
products:  Handling  nonnegative  and  highly 
overdispersed count data, Control Engineering Practice 
95, 104258. 
Cho E., Jun J.-H., Chang T.-W., Choi Y., (2020), Quality 
prediction modelling of plastic extrusion process, ICIC 
express  letters.  Part  B,  Applications:  an  international 
journal of research and surveys 11 (5) ,447–452. 
Dogan  A.,  Birant  D.,  (2021)  Machine  learning  and  data 
mining  in  manufacturing,  Expert  Systems  with 
Applications 166 ,114060. 
Tiwari R. Rai, M. K., Ivanov D., Dolgui A., (2021). Machine 
learning in manufacturing and industry 4.0 applications  
Jian C., Ping J., Zhang M., (2021), A cloud edge-based two-
level  hybrid  scheduling  learning  model  in  cloud 
manufacturing,  International  Journal  of  Production 
Research 59 (16) 4836–4850. 
Chen B., Wan J., Celesti A., Abbas D. Li, H., Zhang Q., 
(2018),  Edge  computing  in  iot-based  manufacturing, 
IEEE Communications Magazine 56 (9) ,103–109. 
Tao  Q.  Qi,  F.,  (2019),  A  smart  manufacturing  service 
system based on edge computing, fog computing, and 
cloud computing, IEEE Access 7, 86769–86777. 
Liao  J.  Lu,  X.,  Ouyang  S.  Li,  H.,  Chen  K.,  Huang  B., 
(2019), An effective  ABC-SVM  approach  for  surface 
roughness  prediction  in  manufacturing  processes, 
Complexity 2019  
Casalino  G.,  Facchini  F.,  Mortello  M.,  Mummolo  G., 
(2016),  Ann  modelling  to  optimize  manufacturing 
processes:  The  case  of  laser  welding,  IFAC- 
PapersOnLine 49 (12), 378–383. 
Ronowicz J.,  Thommes M., Kleinebudde P., Krysinski J., 
(2015),  A  data  mining  approach  to  optimize  pellets 
manufacturing  process  based  on  a  decision  tree 
algorithm,  European  Journal  of  Pharmaceutical 
Sciences 73, 44–48. 
Kong N. Li, H., Gong Y. Ma, G., Huai W., (2016), Human 
performance  modelling  for  manufacturing  based  on  an 
improved KNN algorithm, The International Journal of 
Advanced Manufacturing Technology 84 (1-4) 473–483. 
Doulgkeroglou M.-N., Nubila A. Di, Niessing B., Konig N., 
Schmitt  R.  H.,  Damen  J.,  Szilvassy  S.  J.,  Chang  W., 
Csontos  L.,  Louis  S.,  et  al.,  (2020),  Automation, 
monitoring,  and  standardization  of  cell  product 
manufacturing,  Frontiers  in  Bioengineering  and 
Biotechnology 8, 811. 
Syafrudin M., Alfian G., Fitriyani N. L.,  Rhee J., (2018), 
Performance analysis of iot-based sensor, big data 
processing, and machine learning model for real-time 
monitoring  system  in  automotive  manufacturing, 
Sensors 18 (9), 2946. 
Romero D., Gaiardelli P., Powell D., Wuest T., Thurer M., 
(2019), Rethinking jidoka systems under automation & 
learning perspectives in the digital lean manufacturing 
world, IFAC-PapersOnLine 52 (13) , 899–903 
Chui  M.,  George  K.,  Manyika  J.,  Miremadi  M.,  (2017), 
Human+  machine:  A  new  era  of  automation  in 
manufacturing, McKinsey & Company 13. 
Bricher  D.,  Muller  A.,  (2020),  A  supervised  machine 
learning approach  for in- telligent process  automation 
in  container  logistics,  Journal  of  Computing  and 
Information Science in Engineering 20 (3)  
Singh,  D.  and  Venkateswara  R.  P,  (2007),  A  surface 
roughness  prediction  model  for  hard  turning  process, 
The International Journal of Advanced Manufacturing 
Technology, 1115–1124. 
Jurkovic,  Z.,  Cukor  G.,  Brezocnik  M.,  and  Brajkovic  T, 
(2018), A comparison of machine learning methods for 
cutting  parameters  prediction  in  high  speed  turning 
process,  Journal  of  Intelligent  Manufacturing,  1683–
1693. 
Laghari, R. A., Li, J., Laghari, A. A., Mia, M., Wang, S. A., 
Wang P. KK, (2019) , Carbide tool life prediction and 
modelling  in  SiCp/Al  turning  process  via  artificial 
neural  network  approach,  IOP  Conference  Series: 
Materials Science and Engineering 012022. 
Zhao X., Lovreglio R. and Nilsson D., (2020) , Modelling 
and interpreting pre-evacuation decision-making using 
machine  learning,  Automation  in  Construction, 
103140. 
Uzkent B., Sheehan E., Meng C., Tang Z, Burke M, Lobell 
D, and Ermon S, (2019), Learning to interpret satellite 
images  using  Wikipedia,  Proceedings  of  the  Twenty-
Eighth  International  Joint  Conference  on  Artificial 
Intelligence.  
Brisk R, Bond RR, Banks E, Piadlo A, Finlay D, 
McLaughlin J, and David M, (2019), Deep learning to 
automatically  interpret  images  of  the 
electrocardiogram:  Do  we  need  the  raw  samples?, 
Journal of electrocardiology, S65–S69 
Kim D-H, Kim T, Wang X, Kim M, Quan Y, Oh J,  Min S-
H, Kim H, Bhandari B, Yang I, and Ahn, S-H, (2018), 
Smart Machining Process Using Machine Learning: A 
Review  and  Perspective  on  Machining  Industry, 
International  Journal  of  Precision  Engineering  and 
Manufacturing-Green Technology, 555-568. 
Rahman H, Ahmed M.U, Barua, S, Funk P, and Begum S, 
(2021)  Vision-Based  Driver’s  Cognitive  Load 
Classification  Considering  Eye  Movement  Using 
Machine  Learning  and  Deep  Learning,  Sensors,  1424-
8220. 
Qadir H A, Shin Y, Solhusvik, J, Bergsland J, Aabakken L, 
Balasingham  I,  (2019),  Polyp  detection  and 
segmentation  using  mask  R-CNN:  Does  a  deeper 
feature  extractor  CNN  always  perform  better?,  2019 
13th International Symposium on Medical Information 
and Communication Technology (ISMICT) 1–6. 
Sheuly, S.S., Ahmed M U, and Begum S, (2021), Machine 
Learning  Based  Digital  Twin  in  Manufacturing:  A 
Bibliometric  Analysis  and  Evolutionary  Overview, 
submitted to Journal of applied sciences, 1424-8220.