ence – ICCS 2022, Proceedings of the 22
nd
Interna-
tional Conference, Part III, chapter 50, pages 605–
612, Cham. Springer International Publishing.
Daggubati, S. C., Sreevalsan-Nair, J., and Dadhich, K.
(2022). BarChartAnalyzer: Data Extraction and Sum-
marization of Bar Charts from Images. SN Computer
Science, 3(500).
Davidson, S. B. and Freire, J. (2008). Provenance and
scientific workflows: challenges and opportunities.
In Proceedings of the 2008 ACM SIGMOD inter-
national conference on Management of data, pages
1345–1350.
Demir, S., Carberry, S., and McCoy, K. F. (2008). Generat-
ing Textual Summaries of Bar Charts. In Proceedings
of the Fifth International Natural Language Genera-
tion Conference, INLG ’08, pages 7–15, USA. Asso-
ciation for Computational Linguistics.
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-
Fei, L. (2009). Imagenet: A large-scale hierarchical
image database. In Proceedings of IEEE Conference
on Computer Vision and Pattern Recognition, pages
248–255. IEEE.
Dyer, R. (2021). Visualizing Your Visualizations: The
Role of Meta-visualization in Learning Analytics. In
Sahin, M. and Ifenthaler, D., editors, Visualizations
and Dashboards for Learning Analytics, pages 173–
188. Springer International Publishing, Cham.
Ellis, G. and Dix, A. (2006). An explorative analysis of
user evaluation studies in information visualisation.
In Proceedings of the 2006 AVI workshop on BEyond
time and errors: novel evaluation methods for infor-
mation visualization, pages 1–7.
Flavell, J. H. (1979). Metacognition and cognitive monitor-
ing: A new area of cognitive–developmental inquiry.
American Psychologist, 34(10):906.
Gilbert, J. K. (2005). Visualization: A metacognitive skill
in science and science education. In Visualization in
science education, pages 9–27. Springer.
Gilbert, J. K. (2008). Visualization: An emergent field of
practice and enquiry in science education. In Visu-
alization: Theory and practice in science education,
pages 3–24. Springer.
Javed, W. and Elmqvist, N. (2012). Exploring the design
space of composite visualization. In 2012 IEEE Pa-
cific Visualization Symposium, pages 1–8. IEEE.
Kafle, K., Price, B., Cohen, S., and Kanan, C. (2018).
DVQA: Understanding data visualizations via ques-
tion answering. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 5648–5656.
Kahou, S. E., Michalski, V., Atkinson, A., K
´
ad
´
ar,
´
A.,
Trischler, A., and Bengio, Y. (2017). FigureQA: An
annotated figure dataset for visual reasoning. arXiv
preprint arXiv:1710.07300.
Keim, D., Andrienko, G., Fekete, J.-D., G
¨
org, C., Kohlham-
mer, J., and Melanc¸on, G. (2008). Visual analytics:
Definition, process, and challenges. In Information
visualization, pages 154–175. Springer.
Knudsen, S. and Carpendale, S. (2016). View rela-
tions: An exploratory study on between-view meta-
visualizations. In Proceedings of the 9th Nordic Con-
ference on Human-Computer Interaction, pages 1–10.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. Communications of the ACM, 60(6):84–
90.
Lame, G. (2019). Systematic literature reviews: An intro-
duction. In proceedings of the design society: inter-
national conference on engineering design, volume 1,
pages 1633–1642. Cambridge University Press.
Locatelli, S., Ferreira, C., and Arroio, A. (2010). Metavisu-
alization: An important skill in the learning chemistry.
Problems of Education in the 21st Century, 24:75.
Merriam-Webster (2022). Metadata – Definition and Mean-
ing. https://www.merriam-webster.com/dictionary/
metadata. Last accessed on November 20, 2022.
Methani, N., Ganguly, P., Khapra, M. M., and Kumar, P.
(2020). PlotQA: Reasoning over Scientific Plots. In
The IEEE Winter Conference on Applications of Com-
puter Vision, pages 1516–1525.
Munzner, T. (2014). Visualization analysis and design.
CRC press.
Nocke, T. and Schumann, H. (2002). Meta data for visual
data mining. In Proceedings Computer Graphics and
Imaging (CGIM), pages 358–064. ACTA Press.
Peck, E. M., Ayuso, S. E., and El-Etr, O. (2019). Data is per-
sonal: Attitudes and perceptions of data visualization
in rural pennsylvania. In Proceedings of the 2019 CHI
Conference on Human Factors in Computing Systems,
pages 1–12.
Peltonen, J. and Lin, Z. (2013). Information retrieval per-
spective to meta-visualization. In Asian Conference
on Machine Learning, pages 165–180. PMLR.
Ragan, E. D., Endert, A., Sanyal, J., and Chen, J. (2015).
Characterizing provenance in visualization and data
analysis: an organizational framework of provenance
types and purposes. IEEE transactions on visualiza-
tion and computer graphics, 22(1):31–40.
Rau, M. A. (2017). Conditions for the effectiveness of mul-
tiple visual representations in enhancing STEM learn-
ing. Educational Psychology Review, 29(4):717–761.
Riley, J. (2017). Understanding Metadata: What is Meta-
data and What is it for? Washington DC, United
States: National Information Standards Organization,
23.
Roberts, J. C. (2007). State of the art: Coordinated &
multiple views in exploratory visualization. In Fifth
international conference on coordinated and multiple
views in exploratory visualization (CMV 2007), pages
61–71. IEEE.
Savva, M., Kong, N., Chhajta, A., Fei-Fei, L., Agrawala,
M., and Heer, J. (2011). ReVision: Automated Clas-
sification, Analysis and Redesign of Chart Images. In
Proceedings of the 24th Annual ACM Symposium on
User Interface Software and Technology, UIST ’11,
pages 393–402, New York, NY, USA. Association for
Computing Machinery.
Sedlmair, M., Meyer, M., and Munzner, T. (2012). Design
study methodology: Reflections from the trenches and
IVAPP 2023 - 14th International Conference on Information Visualization Theory and Applications
238