ACKNOWLEDGMENTS
This work has been carried out within the project
TRAPEZE. The TRAPEZE project receives funding
from the European Union’s Horizon 2020 research
and innovation programme under grant agreement
No. 883464
REFERENCES
Bau, J., Mayer, J., Paskov, H., and Mitchell, J. C. (2013). A
Promising Direction for Web Tracking Countermea-
sures. page 5, San Francisco, US. IEEE.
Chawla, N. V., Bowyer, K. W., Hall, L. O., and Kegelmeyer,
W. P. (2002). SMOTE: Synthetic Minority Over-
sampling Technique. Journal of Artificial Intelligence
Research, 16:321–357.
Chrome Developers (2022). chrome.webRequest.
Department of Electronics and Telecommunications and
Politecnico di Torino (2021). Ermes Project.
Disconnect Inc. (2021). Disconnect.me.
easylist (2022). EasyPrivacy.
Englehardt, S. and Narayanan, A. (2016). Online Track-
ing: A 1-million-site Measurement and Analysis. In
Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security - CCS’16,
pages 1388–1401, Vienna, Austria. ACM Press.
Esfandiari, B. and Nock, R. (2005). Adaptive Filtering of
Advertisements on Web Pages. In Special Interest
Tracks and Posters of the 14th International Confer-
ence on World Wide Web, WWW ’05, pages 916–917,
New York, NY, USA. Association for Computing Ma-
chinery. event-place: Chiba, Japan.
eyeo GmbH (2022). How to write filters | Adblock Plus
Help Center.
Ghostery GmbH (2021). Ghostery.
Gugelmann, D., Happe, M., Ager, B., and Lenders, V.
(2015). An Automated Approach for Complementing
Ad Blockers’ Blacklists. In Proceedings on Privacy
Enhancing Technologies, volume 2015, pages 282–
298, Philadelphia, PA, USA. Sciendo. Section: Pro-
ceedings on Privacy Enhancing Technologies.
Han, H., Wang, W.-Y., and Mao, B.-H. (2005). Borderline-
SMOTE: A New Over-Sampling Method in Imbal-
anced Data Sets Learning. In Huang, D.-S., Zhang,
X.-P., and Huang, G.-B., editors, Advances in Intelli-
gent Computing, Lecture Notes in Computer Science,
pages 878–887, Berlin, Heidelberg. Springer.
Ikram, M., Asghar, H. J., Kaafar, M. A., Mahanti, A.,
and Krishnamurthy, B. (2017). Towards Seamless
Tracking-Free Web: Improved Detection of Trackers
via One-class Learning. In Proceedings on Privacy
Enhancing Technologies, volume 2017, pages 79–99,
Minneapolis, USA. Sciendo. Section: Proceedings on
Privacy Enhancing Technologies.
Iqbal, U., Englehardt, S., and Shafiq, Z. (2021). Fingerprint-
ing the Fingerprinters: Learning to Detect Browser
Fingerprinting Behaviors. In 2021 IEEE Sympo-
sium on Security and Privacy (SP), pages 1143–1161.
ISSN: 2375-1207.
Iqbal, U., Snyder, P., Zhu, S., Livshits, B., Qian, Z., and
Shafiq, Z. (2019). AdGraph: A Graph-Based Ap-
proach to Ad and Tracker Blocking. In 2020 IEEE
Symposium on Security and Privacy, pages 763–776,
Online. IEEE.
Kaizer, A. J. and Gupta, M. (2016). Towards Automatic
Identification of JavaScript-oriented Machine-Based
Tracking. In Proceedings of the 2016 ACM on Inter-
national Workshop on Security And Privacy Analytics,
IWSPA ’16, pages 33–40, New York, NY, USA. As-
sociation for Computing Machinery.
Kleinberg, J. M. (1999). Authoritative sources in a hyper-
linked environment. Journal of the ACM, 46(5):604–
632.
Kushmerick, N. (1999). Learning to Remove Internet Ad-
vertisements. In Proceedings of the Third Annual
Conference on Autonomous Agents, AGENTS ’99,
pages 175–181, New York, NY, USA. Association for
Computing Machinery. event-place: Seattle, Wash-
ington, USA.
Le Pochat, V., Van Goethem, T., Tajalizadehkhoob, S.,
Korczynski, M., and Joosen, W. (2019). Tranco:
A Research-Oriented Top Sites Ranking Hardened
Against Manipulation. In Proceedings 2019 Net-
work and Distributed System Security Symposium,
San Diego, CA. Internet Society.
LexisNexis (2022). ThreatMetrix - Cybersecurity Risk
Management.
Li, T.-C., Hang, H., Faloutsos, M., Efstathopoulos, P.,
Faloutsos, M., and Efstathopoulos, P. (2015). Track-
Advisor: Taking Back Browsing Privacy from Third-
Party Trackers. In International Conference on Pas-
sive and Active Network Measurement, volume 8995,
pages 277–289, Cham. Springer International Pub-
lishing. Series Title: Lecture Notes in Computer Sci-
ence.
Mayer, J. R. and Mitchell, J. C. (2012). Third-Party Web
Tracking: Policy and Technology. In 2012 IEEE
Symposium on Security and Privacy, pages 413–427.
ISSN: 2375-1207.
MDN Web Docs (2022a). HTTP request methods - HTTP |
MDN.
MDN Web Docs (2022b). URL.pathname - Web APIs |
MDN.
Metwalley, H., Traverso, S., and Mellia, M. (2015a). Un-
supervised Detection of Web Trackers. In 2015 IEEE
Global Communications Conference (GLOBECOM),
pages 1–6, San Diego, CA, USA. IEEE.
Metwalley, H., Traverso, S., Mellia, M., Miskovic, S.,
Baldi, M., Mellia, M., Miskovic, S., and Baldi, M.
(2015b). The Online Tracking Horde: A View from
Passive Measurements. In TMA 2015: Traffic Mon-
itoring and Analysis, volume 9053, pages 111–125,
Barcelona, Spain. Springer International Publishing.
Page, L., Brin, S., Motwani, R., and Winograd, T. (1999).
The PageRank Citation Ranking: Bringing Order to
the Web. Techreport. Publisher: Stanford InfoLab.
ICISSP 2023 - 9th International Conference on Information Systems Security and Privacy
208