improvement in laser output were confirmed to be
due to the diamond submount.
ACKNOWLEDGEMENTS
This work was supported by Innovative Science and
Technology Initiative for Security (Grant Number
JPJ004596), ATLA, Japan.
REFERENCES
Faist, J., Capasso, F., Sivco, D. L., Sirtori, C., Hutchinson,
A., & Cho, A. Y. (1994). Quantum cascade laser.
Science, 264, 553–556.
Evans, A., Darvish, S. R., Slivken, S., Nguyen, J., Bai, Y.,
& Razeghi, M. (2007). Buried heterostructure quantum
cascade lasers with high continuous-wave wall plug
efficiency. Appl. Phys. Lett., 91, 071101-1–3.
Colombelli, R., Srinivasan, K., Troccoli, M., Painter, O.,
Gmachl, C. F., Tennant, D. F., Sergent, A. M., Sivco,
D. L., Cho, A. Y., & Capasso, F. (2003). Quantum
cascade surface-emitting photonic crystal laser.
Science, 302, 1374–1377.
Saito, S., Hashimoto, R., Kaneko, K., Kakuno, T., Yao, Y.,
Ikeda, N., Sugimoto, Y., Mano, Y., Kuroda, T.,
Tanimura, H., Takagi, S., & Sakoda, K. (2021). Design
and fabrication of photonic crystal resonators for
single-mode and vertical surface emission from strain-
compensated quantum cascade lasers operating at 4.32
μm. Appl. Phys. Express, 14, 102003-1–5.
Yao, Y., Ikeda, N., Chalimah, S., Kuroda, T., Sugimoto, Y.,
Mano, T., Koyama, H., Hashimoto, R., Kaneko, K.,
Kakuno, T., Ookuma, S., Togawa, T., Ohno, H., Saito,
S., Takahashi, H., Tanimura, H., Takagi, S., & Sakoda,
K. (2022). Improved power and far-field pattern of
surface-emitting quantum cascade lasers with strain
compensation to operate at 4.3 μm”, Jpn. J. Appl. Phys.
61, 052001-1–8.
Takagi, S., Tanimura, H., Kakuno, T., Hashimoto, & R.,
Saito, S. (2019). Thermal analysis and heat dissipation
improvement for quantum cascade lasers through
experiments, simulations, and structure function. Jpn.
J. Appl. Phys., 58, 091008-1–6.
Takagi, S., Tanimura, H., Kakuno, T., Hashimoto, R., Saito,
S. (2022). Improvement of thermal resistance of
surface-emitting quantum cascade laser using structural
function and 3D thermal flow simulation. 10
th
International Conference on Photonics, Optics, and
Laser Technology, 128–132.
Ho, C. J., Chen, M. W., & Li, Z. W. (2008). Numerical
simulation of natural convection of nanofluid in a
square enclosure: Effects due to uncertainties of
viscosity and thermal conductivity, Int. J. Heat Mass
Transfer, 51, 4506–4516.
Bezotosnyi, V. V., Krokhin, O. N., Oleshchenko, V. N.,
Pevtsov, V.A., Popov, Y. M., & Cheshev, E. A. (2014).
Thermal modelling of high-power laser diodes mounted
using various types of submount. IEEE J. Quantum
Electron., 44, 899–902.
Kim, Y. M., Rodwell, M. J. W., & Gossard, A. C. (2002).
Thermal characteristics of InP, InAlAs, and AlGaAsSb
metamorphic buffer layers used in In
0.52
Al
0.48
/
In
0.53
Ga
0.47
As heterojunction bipolar transistors grown
on GaAs substrates. J. Electron. Mater., 31, 196–199.
Adachi, S. (1985). GaAs, AlAs, and AlxGa1−xAs: Material
parameters for use in research and device applications.
J. Appl. Phys., 58, R1–R29.
Székely, V. (1997). A new evaluation method of thermal
transient measurement results. Microelectron. J., 28,
277–292.