2016 IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 2414–2423.
Goyani, M. and Neha, C. (2020). A review of movie rec-
ommendation system. ELCVIA: electronic letters on
computer vision and image analysis, 19(3):18–37.
Han, J., Kamber, M., and Pei, J. (2011). Data Mining: Con-
cepts and Techniques. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 3rd edition.
Huang, Z., Chung, W., Ong, T.-H., and Chen, H. (2002). A
graph-based recommender system for digital library.
In Proceedings of the 2nd ACM/IEEE-CS Joint Con-
ference on Digital Libraries, JCDL ’02, page 65–73,
New York, NY, USA. Association for Computing Ma-
chinery.
Isenberg, T. (2016). Interactive NPAR: What Type of Tools
Should We Create? In B
´
enard, P. and Winnem
¨
oller,
H., editors, Non-Photorealistic Animation and Ren-
dering. The Eurographics Association.
Klingbeil, M., Pasewaldt, S., Semmo, A., and D
¨
ollner, J.
(2017). Challenges in user experience design of im-
age filtering apps. In SIGGRAPH Asia 2017 Mobile
Graphics Interactive Applications, SA ’17, New York,
NY, USA. Association for Computing Machinery.
Kumar, M., Yadav, D., Singh, A. K., and Gupta, V. K.
(2015). A movie recommender system: Movrec. In-
ternational Journal of Computer Applications, 124:7–
11.
Moscato, V., Picariello, A., and Sperl
´
ı, G. (2021). An emo-
tional recommender system for music. IEEE Intelli-
gent Systems, 36:57–68.
Nouri, E., Sim, R., Fourney, A., and White, R. W. (2020).
Step-wise recommendation for complex task support.
In Proceedings of the 2020 Conference on Human In-
formation Interaction and Retrieval, CHIIR ’20, page
203–212, New York, NY, USA. Association for Com-
puting Machinery.
Pasewaldt, S., Semmo, A., D
¨
ollner, J., and Schlegel, F.
(2016). BeCasso: Artistic Image Processing and Edit-
ing on Mobile Devices. In Proceedings of ACM SIG-
GRAPH ASIA Mobile Graphics and Interactive Appli-
cations (MGIA), pages 14:1–14:1, New York. ACM.
Ricci, F., Rokach, L., and Shapira, B. (2022). Recommender
Systems: Techniques, Applications, and Challenges,
pages 1–35. Springer US, New York, NY.
Ricci, F., Rokach, L., Shapira, B., and Kantor, P. B. (2010).
Recommender Systems Handbook. Springer-Verlag,
Berlin, Heidelberg, 1st edition.
Richter, M., S
¨
ochting, M., Semmo, A., D
¨
ollner, J.,
and Trapp, M. (2018). Service-based Processing
and Provisioning of Image-Abstraction Techniques.
In Proceedings International Conference on Com-
puter Graphics, Visualization and Computer Vision
(WSCG), pages 97–106, Plzen, Czech Republic. Com-
puter Science Research Notes (CSRN).
Shadija, D., Rezai, M., and Hill, R. (2017). Microservices:
Granularity vs. performance. In Companion Proceed-
ings of The10th International Conference on Utility
and Cloud Computing, UCC ’17 Companion, page
215–220, New York, NY, USA. Association for Com-
puting Machinery.
Sperl
´
ı, G., Amato, F., Mercorio, F., Mezzanzanica, M.,
Moscato, V., and Picariello, A. (2018). A social me-
dia recommender system. Int. J. Multim. Data Eng.
Manag., 9:36–50.
Viggiato, M., Terra, R., Rocha, H., Valente, M. T., and
Figueiredo, E. (2018). Microservices in practice: A
survey study. CoRR, abs/1808.04836.
Xia, B. and Gong, P. (2014). Review of business intelli-
gence through data analysis. Benchmarking: An In-
ternational Journal, 21:300–311.
¨
Olveck
´
y, M. and Host’oveck
´
y, M. (2021). Digital image
forensics using exif data of digital evidence. In 2021
19th International Conference on Emerging eLearn-
ing Technologies and Applications (ICETA), pages
282–286.
HUCAPP 2023 - 7th International Conference on Human Computer Interaction Theory and Applications
258