Journal of Advances in Information Technology Vol,
11(2), 78-83.
Dumitrescu, E., Hué, S., Hurlin, C., & Tokpavi, S. (2022).
Machine learning for credit scoring: Improving logistic
regression with non-linear decision-tree effects.
European Journal of Operational Research, 297(3),
1178-1192.
Dwivedi, R., Dave, D., Naik, H., Singhal, S., Rana, O.,
Patel, P., ... & Ranjan, R. (2022). Explainable AI (XAI):
core ideas, techniques and solutions. ACM Computing
Surveys (CSUR).
EBA. (2020). Report on big data and advanced analytics.
European Banking Authority.
Esteva, A., Kuprel, B., Novoa, R. A., Ko, J., Swetter, S. M.,
Blau, H. M., & Thrun, S. (2017). Dermatologist-level
classification of skin cancer with deep neural networks.
Nature, 542(7639), 115-118.
Gelman, A., & Hill, J. (2006). Data analysis using
regression and multilevel/hierarchical models.
Cambridge university press.
Ghosh, A., & Maiti, R. (2021). Soil erosion susceptibility
assessment using logistic regression, decision tree and
random forest: study on the Mayurakshi river basin of
Eastern India. Environmental Earth Sciences, 80(8), 1-
16..
Giannakis, E., & Bruggeman, A. (2018). Exploring the
labour productivity of agricultural systems across
European regions: A multilevel approach. Land use
policy, 77, 94-106.
Gunning, D., Stefik, M., Choi, J., Miller, T., Stumpf, S., &
Yang, G. Z. (2019). XAI—Explainable artificial
intelligence. Science robotics, 4(37), eaay7120.
Gupta, G. P., & Kulariya, M. (2016). A framework for fast
and efficient cyber security network intrusion detection
using apache spark. Procedia Computer Science, 93,
824-831.
Hardt, M., Price, E., & Srebro, N. (2016). Equality of
opportunity in supervised learning. Advances in neural
information processing systems, 29.
Kaggle. (2018). US Health Insurance Dataset. [Online].
Retrieved 01.03.2022: https://www.kaggle.com/
datasets/teertha/ushealthinsurancedataset
Kazim, E., Denny, D. M. T., & Koshiyama, A. (2021). AI
auditing and impact assessment: according to the UK
information commissioner’s office. AI and Ethics, 1(3),
301-310.
Kim, H., Cho, H., & Ryu, D. (2020). Corporate default
predictions using machine learning: Literature review.
Sustainability, 12(16), 6325.
Kordzadeh, N., & Ghasemaghaei, M. (2022). Algorithmic
bias: review, synthesis, and future research directions.
European Journal of Information Systems, 31(3), 388-
409.
Loh, H. W., Ooi, C. P., Seoni, S., Barua, P. D., Molinari, F.,
& Acharya, U. R. (2022). Application of Explainable
Artificial Intelligence for Healthcare: A Systematic
Review of the Last Decade (2011–2022). Computer
Methods and Programs in Biomedicine, 107161.
Loyal, J. D., Zhu, R., Cui, Y., & Zhang, X. (2022).
Dimension Reduction Forests: Local Variable
Importance using Structured Random Forests. Journal
of Computational and Graphical Statistics, 1-10..
Lundberg, S. M., & Lee, S. I. (2017). A unified approach to
interpreting model predictions. Advances in neural
information processing systems, 30.
Ma, C., Baker, A. C., & Smith, T. E. (2021). How income
inequality influenced personal decisions on disaster
preparedness: A multilevel analysis of homeowners
insurance among Hurricane Maria victims in Puerto
Rico. International Journal of Disaster Risk Reduction,
53, 101953.
Mehrabi, N., Morstatter, F., Saxena, N., Lerman, K., &
Galstyan, A. (2021). A survey on bias and fairness in
machine learning. ACM Computing Surveys (CSUR),
54(6), 1-35.
Mikians, J., Gyarmati, L., Erramilli, V., & Laoutaris, N.
(2012, October). Detecting price and search
discrimination on the internet. In Proceedings of the
11th ACM workshop on hot topics in networks
(pp. 79-84).
Milanović, S., Marković, N., Pamučar, D., Gigović, L.,
Kostić, P., & Milanović, S. D. (2020). Forest fire
probability mapping in eastern Serbia: Logistic
regression versus random forest method. Forests,
12(1), 5.
Miller, T. (2019). Explanation in artificial intelligence:
Insights from the social sciences. Artificial intelligence,
267, 1-38.
Mohseni, S., Zarei, N., & Ragan, E. D. (2021). A
multidisciplinary survey and framework for design and
evaluation of explainable AI systems. ACM
Transactions on Interactive Intelligent Systems (TiiS),
11(3-4), 1-45.
Molnar, C. (2020). Interpretable machine learning. Lulu.
com.
Mothilal, R. K., Sharma, A., & Tan, C. (2020, January).
Explaining machine learning classifiers through diverse
counterfactual explanations. In Proceedings of the 2020
conference on fairness, accountability, and
transparency (pp. 607-617).
Nawrotzki, R. J., & Bakhtsiyarava, M. (2017). International
climate migration: Evidence for the climate inhibitor
mechanism and the agricultural pathway. Population,
space and place, 23(4), e2033.
Pessach, D., & Shmueli, E. (2022). A Review on Fairness
in Machine Learning. ACM Computing Surveys
(CSUR), 55(3), 1-44.
Rai, N. (2022). Why ethical audit matters in artificial
intelligence? AI and Ethics, 2(1), 209-218.
Raji, I. D., & Buolamwini, J. (2019, January). Actionable
auditing: Investigating the impact of publicly naming
biased performance results of commercial ai products.
In Proceedings of the 2019 AAAI/ACM Conference on
AI, Ethics, and Society (pp. 429-435).
Sarker, I. H. (2021). Machine learning: Algorithms, real-
world applications and research directions. SN
Computer Science, 2(3), 1-21.
Schroepfer, M. (2021, March 11). Teaching fairness to
machines. Facebook Technology. https://tech.fb.com/
teaching-fairness-to-machines/