of the 2020 CDTI Missions Program (Center
for the Development of Industrial Technology
of the Ministry of Science and Innovation of
Spain), the R+D+d project PID2020-112540RB-
C42, AETHER-UCLM (A smart data holistic ap-
proach for context-aware data analytics), funded by
MCIN/AEI/10.13039/501100011033/, and the QU-
ASAP project “QUAntum Software modernizA-
tions Prototype” (PDC2022-133051-I00), funded by
MCIN/ AEI/10.13039/501100011033/ and the Euro-
pean Union NextGenerationEU.
REFERENCES
Benioff, P. (1980). The computer as a physical system: A
microscopic quantum mechanical hamiltonian model
of computers as represented by turing machines. Jour-
nal of Statistical Physics, 22:563–591.
Budgen, D. (2013). Design patterns: Magic or myth? IEEE
Software, 30(2):87 – 90. Cited by: 6.
Cruz-Lemus, J. A., Marcelo, L. A., and Piattini, M. (2021).
Towards a set of metrics for quantum circuits under-
standability. In Paiva, A. C. R., Cavalli, A. R., Ven-
tura Martins, P., and P
´
erez-Castillo, R., editors, Qual-
ity of Information and Communications Technology,
pages 239–249, Cham. Springer International Pub-
lishing.
Duncan, R. and Perdrix, S. (2010). Rewriting measurement-
based quantum computations with generalised ﬂow.
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artiﬁcial Intelligence and
Lecture Notes in Bioinformatics), 6199 LNCS(PART
2):285 – 296. Cited by: 61; All Open Access, Green
Open Access.
Eslamy, M., Houshmand, M., Zamani, M. S., and Sedighi,
M. (2016). Geometry-based signal shifting of one-
way quantum computation measurement patterns. In
2016 24th Iranian Conference on Electrical Engineer-
ing (ICEE), page 356 – 361, Piscataway, NJ. Institute
of Electrical and Electronic Engineers. Cited by: 2.
Eslamy, M., Houshmand, M., Zamani, M. S., and Sedighi,
M. (2018). Optimization of one-way quantum com-
putation measurement patterns. International Journal
of Theoretical Physics, 57(11):3296 – 3317. Cited by:
2; All Open Access, Green Open Access.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J.
(1994). Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Profes-
sional, Indianapolis, IN, 1 edition.
Gilliam, A., Venci, C., Muralidharan, S., Dorum, V., May,
E., Narasimhan, R., and Gonciulea, C. (2019). Foun-
dational patterns for efﬁcient quantum computing.
Gray, N. (1996). Teaching object orientation: Patterns and
reuse. In Proceedings of 1996 Australian Software En-
gineering Conference, page 72 – 80. Cited by: 1.
Grover, L. K. (1996). A fast quantum mechanical algorithm
for database search. volume Part F129452, page 212
– 219. Cited by: 3963.
Houshmand, M., Zamani, M. S., Samavatian, M. H., and
Sedighi, M. (2012). Extracting one-way quantum
computation patterns from quantum circuits. In The
16th CSI International Symposium on Computer Ar-
chitecture and Digital Systems (CADS 2012), page 64
– 69, Piscataway, NJ. Institute of Electrical and Elec-
tronic Engineers. Cited by: 3.
Houshmand, M., Zamani, M. S., Samavatian, M. H., and
Sedighi, M. (2015). Automatic translation of quantum
circuits to optimized one-way quantum computation
patterns. Quantum Information Processing, 13:2463
– 2482.
Iten, R., Moyard, R., Metger, T., Sutter, D., and Woerner,
S. (2022). Exact and practical pattern matching for
quantum circuit optimization. ACM Transactions on
Quantum Computing, 3(1).
Jang, W., Terashi, K., Saito, M., Bauer, C. W., Nachman,
B., Iiyama, Y., Kishimoto, T., Okubo, R., Sawada, R.,
and Tanaka, J. (2021). Quantum gate pattern recog-
nition and circuit optimization for scientiﬁc applica-
tions. EPJ Web of Conferences, 251:03023.
Jozsa, R. (2005). An introduction to measurement based
quantum computation.
Leymann, F. (2019). Towards a pattern language for quan-
tum algorithms. Lecture Notes in Computer Science
(including subseries Lecture Notes in Artiﬁcial Intel-
ligence and Lecture Notes in Bioinformatics), 11413
LNCS:218 – 230. Cited by: 10; All Open Access,
Green Open Access.
Lomont, C. (2003). Quantum circuit identities.
Maslov, D., Young, C., Miller, D. M., and Dueck, G. (2005).
Quantum circuit simpliﬁcation using templates. In
Design, Automation and Test in Europe, pages 1208–
1213 Vol. 2, Piscataway, NJ. Institute of Electrical and
Electronic Engineers.
Ozols, M. and Walter, M. (2021). The quantum quest.
P
´
erez-Castillo, R. and Piattini, M. (2022). Design of
classical-quantum systems with uml. Computing,
104:2374–2403.
Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in software en-
gineering. In Proceedings of the 12th International
Conference on Evaluation and Assessment in Software
Engineering, EASE’08, page 68–77, Swindon, GBR.
BCS Learning & Development Ltd.
Piattini, M., Peterssen, G., P
´
erez-Castillo, R., Hevia, J. L.,
Serrano, M. A., Hern
´
andez, G., de Guzm
´
an, I. G.-R.,
Paradela, C. A., Polo, M., Murina, E., Jim
´
enez, L.,
Marque
˜
no, J. C., Gallego, R., Tura, J., Phillipson, F.,
Murillo, J. M., Ni
˜
no, A., and Rodr
´
ıguez, M. (2020).
The talavera manifesto for quantum software engi-
neering and programming. 1st International Work-
shop on Quantum Software Engineering and Pro-
gramming (QANSWER 2020), n/a(n/a):11–12.
Piattini, M., Serrano, M. A., P
´
erez-Castillo, R., Petersen,
G., and Hevia, J. L. (2021). Toward a quantum soft-
ware engineering. IT Professional, 23(1):62–66.
Pius, E. and Silva, E. K. R. D. D. (2015). Optimising
the information ﬂow of one-way quantum computa-
A Systematic Mapping Study on Quantum Circuits Design Patterns
115