Cordasco, G., De Chiara, R., Mancuso, A., Mazzeo, D.,
Scarano, V., and Spagnuolo, C. (2013). Bringing to-
gether efficiency and effectiveness in distributed sim-
ulations: the experience with d-mason. Simulation,
89(10):1236–1253.
Cosenza, B., Popov, N., Juurlink, B., Richmond, P.,
Chimeh, M. K., Spagnuolo, C., Cordasco, G., and
Scarano, V. (2018a). Openabl: a domain-specific lan-
guage for parallel and distributed agent-based simula-
tions. In European Conference on Parallel Process-
ing, pages 505–518. Springer.
Cosenza, B., Popov, N., Juurlink, B. H. H., Richmond, P.,
Chimeh, M. K., Spagnuolo, C., Cordasco, G., and
Scarano, V. (2018b). Openabl: A domain-specific lan-
guage for parallel and distributed agent-based simula-
tions. In Euro-Par.
Dashmap (2023). Dashmap: Blazingly fast concurrent map
in rust.
de Aledo Marugán, P. G., Vladimirov, A., Manca, M.,
Baugh, J., Asai, R., Kaiser, M., and Bauer, R. (2018).
An optimization approach for agent-based computa-
tional models of biological development. Adv. Eng.
Softw., 121:262–275.
Dean, J. and Ghemawat, S. (2008). Mapreduce: Simpli-
fied data processing on large clusters. Commun. ACM,
51(1):107–113.
Dias, S., Sutton, A. J., Welton, N. J., and Ades, A. E.
(2013). Evidence Synthesis for Decision Making 3:
Heterogeneity—Subgroups, Meta-Regression, Bias,
and Bias-Adjustment. Medical Decision Making,
33(5):618–640.
Eubank, S., Guclu, H., Anil Kumar, V., Marathe, M. V.,
Srinivasan, A., Toroczkai, Z., and Wang, N. (2004).
Modelling disease outbreaks in realistic urban social
networks. Nature, 429(6988):180–184.
Gilbert, N. and Terna, P. (2000). How to build and use
agent-based models in social science. Mind & Soci-
ety, 1(1):57–72.
Gomes, C., Thule, C., Broman, D., Larsen, P. G., and
Vangheluwe, H. (2018). Co-simulation: a survey.
ACM Computing Surveys (CSUR), 51(3):1–33.
Gulyás, L. (2005). Understanding Emergent Social Phe-
nomena. PhD thesis, Computer and Automation Re-
search Institute, Budapest.
Hash (2022). hash.ai. https://hash.ai/.
Hessary, Y. K. and Hadzikadic, M. (2017). Role of Be-
havioral Heterogeneity in Aggregate Financial Mar-
ket Behavior: An Agent-Based Approach. Procedia
Computer Science, 108:978–987.
Jaffry, S. W. and Treur, J. (2008). Agent-based and
population-based simulation: A comparative case
study for epidemics. In Proceedings of the 22nd Euro-
pean Conference on Modelling and Simulation, pages
123–130. Citeseer.
Kagho, G. O., Meli, J., Walser, D., and Balac, M. (2022).
Effects of population sampling on agent-based trans-
port simulation of on-demand services. Procedia
Computer Science, 201:305–312.
Kermack, W. O. and McKendrick, A. G. (1927). A contri-
bution to the mathematical theory of epidemics. Pro-
ceedings of the royal society of london. Series A, Con-
taining papers of a mathematical and physical char-
acter, 115(772):700–721.
Kerr, C. C., Stuart, R. M., Mistry, D., Abeysuriya, R. G.,
Rosenfeld, K., Hart, G. R., Núñez, R. C., Cohen, J. A.,
Selvaraj, P., Hagedorn, B., George, L., Jastrz˛ebski,
M., Izzo, A. S., Fowler, G., Palmer, A., Delport, D.,
Scott, N., Kelly, S. L., Bennette, C. S., Wagner, B. G.,
Chang, S. T., Oron, A. P., Wenger, E. A., Panovska-
Griffiths, J., Famulare, M., and Klein, D. J. (2021).
Covasim: An agent-based model of covid-19 dynam-
ics and interventions. PLOS Computational Biology,
17(7):1–32.
Klabnik, S. and Nichols, C. (2019). The Rust Programming
Language (Covers Rust 2018). No Starch Press.
Klabunde, A. and Willekens, F. (2016). Decision-Making
in Agent-Based Models of Migration: State of the
Art and Challenges. European Journal of Population,
32(1):73–97.
Kshirsagar, J. K., Dewan, A., and Hayatnagarkar, H. G.
(2021). EpiRust: Towards a framework for large-
scale agent-based epidemiological simulations using
rust language. In Linköping Electronic Conference
Proceedings. Linköping University Electronic Press.
kubernetes.io (2022). Kubernetes (k8s).
Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., and
Balan, G. (2005). Mason: A multiagent simulation
environment. Simulation, 81(7):517–527.
Matsakis, N. D. and Klock, F. S. (2014). The rust language.
ACM SIGAda Ada Letters, 34(3):103–104.
Mumbai, M. C. O. G. (2011). Mumbai population breakup
by administrative wards.
Parker, J. and Epstein, J. M. (2011). A Distributed Plat-
form for Global-Scale Agent-Based Models of Dis-
ease Transmission. ACM Transactions on Modeling
and Computer Simulation, 22(1):1–25.
Parry, H. R. and Bithell, M. (2012). Large scale agent-based
modelling: A review and guidelines for model scaling.
Agent-based models of geographical systems, pages
271–308.
Patlolla, P., Gunupudi, V., Mikler, A. R., and Jacob, R. T.
(2004). Agent-based simulation tools in computa-
tional epidemiology. In International workshop on in-
novative internet community systems, pages 212–223.
Springer.
Pereira, R., Couto, M., Ribeiro, F., Rua, R., Cunha, J., Fer-
nandes, J. P., and Saraiva, J. (2017). Energy efficiency
across programming languages: how do energy, time,
and memory relate? In Proceedings of the 10th ACM
SIGPLAN International Conference on Software Lan-
guage Engineering, pages 256–267, Vancouver BC
Canada. ACM.
Rayon (2022). Rayon: Simple work-stealing parallelism for
rust.
Snehal Shekatkar, Bhalchandra Pujari, Mihir Arjunwad-
kar, Dhiraj Kumar Hazra, Pinaki Chaudhuri, Sitabhra
Sinha, Gautam I Menon, Anupama Sharma, and Vish-
wesha Guttal (2020). Indsci-sim a state-level epidemi-
ological model for india. Ongoing Study at https:
//indscicov.in/indscisim.
ICAART 2023 - 15th International Conference on Agents and Artificial Intelligence
306