Hinchliff, C., Smith, S., Allman, J., Burleigh, J.,
Chaudhary, R., Coghill, L., ... and Cranston, K.
(2015). Synthesis of phylogeny and taxonomy
into a comprehensive tree of life. Proceedings
of the National Academy of Sciences, 112(41),
12764-12769.
Horiike, T., Miyata, D., Tateno, Y., and Minai, R.
(2011). HGT-Gen: a tool for generating a phylo-
genetic tree with horizontal gene transfer. Bioin-
formation, 7(5), 211.
Huerta-Cepas, J., Serra, F., and Bork, P. (2016). ETE
3: reconstruction, analysis, and visualization of
phylogenomic data. Molecular biology and evo-
lution, 33(6), 1635-1638.
Koonin, E., Makarova, K., and Aravind, L. (2001).
Horizontal gene transfer in prokaryotes: quan-
tification and classification. Annual Reviews in
Microbiology, 55(1), 709-742.
Kundu, S. and Bansal, M. (2019). SaGePhy: An
improved phylogenetic simulation framework
for gene and subgene evolution. Bioinformatics,
35(18), 3496-3498.
Louca, S. and Doebeli, M. (2018). Efficient compara-
tive phylogenetics on large trees. Bioinformatics,
34(6), 1053-1055.
Maddison, D., Schulz, K., and Maddison, W. (2007).
The tree of life web project. Zootaxa, 1668(1),
19-40.
Makarenkov, V. (2001.) T-REX: reconstructing and
visualizing phylogenetic trees and reticulation
networks. Bioinformatics, 17(7), 664-668.
Mallo, D., de Oliveira Martins, L., and Posada, D.
(2016). SimPhy: phylogenomic simulation of
gene, locus, and species trees. Systematic biol-
ogy, 65(2), 334-344.
Philippe, H. and Douady, C. (2003). Horizontal gene
transfer and phylogenetics. Current opinion in
microbiology, 6(5), 498-505.
Schaller, D., Hellmuth, M., and Stadler, P. (2022).
AsymmeTree: A Flexible Python Package for
the Simulation of Complex Gene Family Histo-
ries. Software, 1(3), 276-298.
Sj
¨
ostrand, J., Arvestad, L., Lagergren, J., and
Sennblad, B. (2013). GenPhyloData: realistic
simulation of gene family evolution. BMC bioin-
formatics , 14(1), 1-5.
Stadler, T. (2011). Simulating trees with a fixed num-
ber of extant species. Systematic biology, 60(5),
676-684.
Stockham, C., Wang, L., and Warnow, T. (2002). Sta-
tistically based postprocessing of phylogenetic
analysis by clustering. Bioinformatics, 18, S285-
S293.
Swenson, M., Barbanc¸on, F., Warnow, T., and Lin-
der, C. (2010). A simulation study comparing
supertree and combined analysis methods using
SMIDGen. Algorithms for Molecular Biology,
5(1), 1-16.
Tahiri, N., Willems, M., and Makarenkov, V. (2018).
A new fast method for inferring multiple con-
sensus trees using k-medoids. BMC Evolution-
ary Biology, 18, 1-12.
Tahiri, N., Fichet, B., and Makarenkov, V. (2022).
Building alternative consensus trees and su-
pertrees using k-means and Robinson and Foulds
distance. Bioinformatics, 38(13), 3367-3376.
Tahiri, N., Veriga, A., Koshkarov, A., and Morozov,
B. (2022). Invariant transformers of Robinson
and Foulds distance matrices for convolutional
neural network. Journal of bioinformatics and
computational biology, 2250012-2250012.
Tresoldi, T. (2021). Ngesh: a Python library for syn-
thetic phylogenetic data. Journal of Open Source
Software, 6(66), 3173.
Wilkinson, M., Cotton, J., Lapointe, F., and Pisani,
D. (2007). Properties of supertree methods in
the consensus setting. Systematic Biology, 56(2),
330-337.
Wolfe, J. and Fournier, G. (2018). Horizontal gene
transfer constrains the timing of methanogen
evolution. Nature ecology & evolution, 2(5),
897-903.
Woodhams, M., Lockhart, P., and Holland, B. (2016).
Simulating and summarizing sources of gene
tree incongruence. Genome biology and evolu-
tion, 8(5), 1299-1315.
GPTree: Generator of Phylogenetic Trees with Overlapping and Biological Events for Supertree Inference
219