population-based  cancer  registration.  BMC  medical 
research methodology, 11(1), 129. 
Freeman, E. A., Moisen, G. G., Coulston, J. W., & Wilson, 
B. T. (2016). Random forests  and  stochastic  gradient 
boosting for predicting tree canopy  cover: comparing 
tuning  processes  and  model  performance.  Canadian 
Journal of Forest Research, 46(3), 323-339. 
Friedman,  J.  H.  (2002).  Stochastic  gradient  boosting. 
Computational  statistics  &  data  analysis,  38(4),  367-
378. 
Hancock, T., Put, R., Coomans, D., Vander Heyden, Y., & 
Everingham, Y. (2005). A performance comparison of 
modern statistical techniques for molecular descriptor 
selection and retention prediction in  chromatographic 
QSRR  studies.  Chemometrics and Intelligent 
Laboratory Systems, 76(2), 185-196. 
Hastie, T., Tibshirani, R., & Friedman, J. H. (2017). The 
Elements  of  Statistical  Learning:  Data  Mining, 
Inference, and Prediction: Springer. 
Landis, J. R., & Koch, G. G. (1977). The measurement of 
observer  agreement  for  categorical  data.  Biometrics, 
159-174. 
Le  Sueur,  H.,  Bruce,  I.  N.,  &  Geifman,  N.  (2020).  The 
challenges  in  data  integration–heterogeneity  and 
complexity  in  clinical  trials  and  patient  registries  of 
Systemic  Lupus  Erythematosus.  BMC  Medical 
Research Methodology, 20(1), 1-5. 
Mayr, A., Binder, H., Gefeller, O., & Schmid, M. (2014). 
The  evolution  of  boosting  algorithms.  Methods  of 
information in medicine, 53(06), 419-427. 
Meyer, G (1911). Bericht über die zehnjährige Wirksamkeit 
des  Deutschen  Zentralkomitees  für  Krebsforschung. 
Zeitschrift für Krebsforschung 1911; 10: 8–33. 
Minicozzi, P., Innos, K., Sánchez, M. J., Trama, A., Walsh, 
P.  M.,  Marcos-Gragera,  R.,  ...  &  White,  C.  (2017). 
Quality  analysis  of  population-based  information  on 
cancer  stage  at  diagnosis  across  Europe,  with 
presentation of stage-specific cancer survival estimates: 
A EUROCARE-5 study. European Journal of Cancer, 
84, 335-353. 
Ostenfeld, E. B., Frøslev, T., Friis, S., Gandrup, P., Madsen, 
M. R., & Søgaard, M. (2012). Completeness of colon 
and rectal cancer staging in the Danish Cancer Registry, 
2004–2009. Clinical epidemiology, 4 Suppl 2(Suppl 2), 
33-38. doi:10.2147/clep.s32362 
Ostermann, T., Appelbaum, S., Baumgartner, S., Rist, L., 
& Krüerke, D. (2022). Using Merged Cancer Registry 
Data  for  Survival  Analysis  in  Patients  Treated  with 
Integrative Oncology: Conceptual Framework and First 
Results  of  a  Feasibility  Study.  In  HEALTHINF  (pp. 
463-468). 
Ramos, M., Franch, P., Zaforteza, M., Artero, J., & Durán, 
M. (2015). Completeness of T, N, M and stage grouping 
for all cancers in the Mallorca Cancer Registry. BMC 
Cancer, 15(1), 847. doi:10.1186/s12885-015-1849-x 
Schad,  F.,  Matthes,B.,  Pissarek,  J.  et  al.  (2016).  
QuaDoSta:  Qualitätssicherung,  Dokumentation  
und  Statistik,  eine  open  source  Lösung  am  
Beispiel  onkologischer  Dokumentation;  http://www.  
fih-berlin.de/tumorbasisdokumentation.html  [Stand: 
07Also,  the  AUCs  have  values  between  0.731  and 
0.803,  which  also  does  not  meet  the  standards  for  a 
valid procedure, for which an AUC > 0.8 is defined as 
good and an AUC > 0.9 as very good (cf. Šimundić, 
2009).04.2016] 
Seneviratne, S., Campbell, I., Scott, N., Shirley, R., Peni, 
T.,  &  Lawrenson,  R.  (2014).  Accuracy  and 
completeness of the New Zealand Cancer Registry for 
staging of invasive breast cancer. Cancer epidemiology, 
38(5), 638-644. 
Shah, A. D., Bartlett, J. W., Carpenter, J., Nicholas, O., & 
Hemingway, H. (2014). Comparison of random forest 
and parametric imputation models for imputing missing 
data using MICE: a CALIBER study. American journal 
of epidemiology, 179(6), 764-774. 
Šimundić, A. M. (2009). Measures of diagnostic accuracy: 
basic definitions. Ejifcc, 19(4), 203. 
Søgaard, M., & Olsen, M. (2012). Quality of cancer registry 
data:  completeness  of  TNM  staging  and  potential 
implications.  Clinical  epidemiology,  4  Suppl  2,  1-3. 
doi:10.2147/clep.s33873 
Takes, R. P., Rinaldo, A., Silver, C. E., Piccirillo, J. F., 
Haigentz  Jr,  M.,  Suárez,  C.,  .  .  .  Ferlito,  A.  (2010). 
Future of the TNM classification and staging system in 
head  and  neck  cancer.  Head  &  Neck,  32(12),  1693-
1711. doi:10.1002/hed.21361 
Wagner,  G.  (1991):  History  of  cancer  registration.  In: 
Jensen  OM,  Parkin  DM,  MacLennan  R  et  al,  (eds). 
Cancer  registration:  principles  and  methods.  IARC 
scientific  publication  95.  Lyon:  International  Agency 
for Research on Cancer: 3-6.