the 32nd international ACM SIGIR conference on
Research and development in information retrieval,
pages 758–759.
Cummins, M. and Newman, P. M. (2011). Appearance-
only SLAM at large scale with FAB-MAP 2.0. Int. J.
Robotics Res., 30(9):1100–1123.
Dellaert, F., Fox, D., Burgard, W., and Thrun, S. (1999).
Monte carlo localization for mobile robots. In 1999
International Conference on Robotics and Automation
(ICRA), volume 2, pages 1322–1328.
Feder, H. J. S., Leonard, J. J., and Smith, C. M.
(1999). Adaptive mobile robot navigation and map-
ping. The International Journal of Robotics Research,
18(7):650–668.
Garg, S., Fischer, T., and Milford, M. (2021). Where is
your place, visual place recognition? In Zhou, Z.-
H., editor, Proceedings of the Thirtieth International
Joint Conference on Artificial Intelligence, IJCAI-21,
pages 4416–4425. International Joint Conferences on
Artificial Intelligence Organization.
Gawel, A., Del Don, C., Siegwart, R., Nieto, J., and Cadena,
C. (2018). X-view: Graph-based semantic multi-view
localization. IEEE Robotics and Automation Letters,
3(3):1687–1694.
Gottipati, S. K., Seo, K., Bhatt, D., Mai, V., Murthy, K.,
and Paull, L. (2019). Deep active localization. IEEE
Robotics and Automation Letters, 4(4):4394–4401.
He, Y., Hu, T., and Zeng, D. (2019). Scan-flood fill(scaff):
An efficient automatic precise region filling algorithm
for complicated regions. In IEEE Conference on
Computer Vision and Pattern Recognition Workshops,
pages 761–769. Computer Vision Foundation / IEEE.
Kim, G., Park, B., and Kim, A. (2019). 1-day learning, 1-
year localization: Long-term lidar localization using
scan context image. IEEE Robotics and Automation
Letters, 4(2):1948–1955.
Kong, X., Yang, X., Zhai, G., Zhao, X., Zeng, X., Wang,
M., Liu, Y., Li, W., and Wen, F. (2020). Semantic
graph based place recognition for 3d point clouds. In
2020 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), pages 8216–8223.
IEEE.
Lowry, S. M., S¨underhauf, N., Newman, P., Leonard, J. J.,
Cox, D. D., Corke, P. I., and Milford, M. J. (2016).
Visual place recognition: A survey. IEEE Trans.
Robotics, 32(1):1–19.
Matejek, B., Haehn, D., Zhu, H., Wei, D., Parag, T., and
Pfister, H. (2019). Biologically-constrained graphs for
global connectomics reconstruction. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 2089–2098.
Oliva, A. and Torralba, A. (2001). Modeling the shape
of the scene: A holistic representation of the spatial
envelope. International journal of computer vision,
42(3):145–175.
Ramezani, M., Tinchev, G., Iuganov, E., and Fallon, M.
(2020). Online lidar-slam for legged robots with ro-
bust registration and deep-learned loop closure. In
2020 IEEE International Conference on Robotics and
Automation (ICRA), pages 4158–4164. IEEE.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention, volume 9351 of Lec-
ture Notes in Computer Science, pages 234–241.
Springer.
Shah, D. and Xie, Q. (2018). Q-learning with nearest neigh-
bors. In Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Informa-
tion Processing Systems, pages 3115–3125.
Song, Y., Guan, M., Tay, W. P., Law, C. L., and Wen, C.
(2019). Uwb/lidar fusion for cooperative range-only
slam. In 2019 international conference on robotics
and automation (ICRA), pages 6568–6574. IEEE.
Tanaka, K. (2021). Active cross-domain self-localization
using pole-like landmarks. In 2021 IEEE Interna-
tional Conference on Mechatronics and Automation
(ICMA), pages 1188–1194.
Tommasi, T. and Caputo, B. (2013). Frustratingly easy nbnn
domain adaptation. In Proceedings of the IEEE Inter-
national Conference on Computer Vision, pages 897–
904.
Wang, M., Yu, L., Zheng, D., Gan, Q., Gai, Y., Ye, Z., Li,
M., Zhou, J., Huang, Q., Ma, C., Huang, Z., Guo, Q.,
Zhang, H., Lin, H., Zhao, J., Li, J., Smola, A. J., and
Zhang, Z. (2019). Deep graph library: Towards ef-
ficient and scalable deep learning on graphs. ICLR
Workshop on Representation Learning on Graphs and
Manifolds.
Wang, R., Zhang, T., Yu, T., Yan, J., and Yang, X. (2021).
Combinatorial learning of graph edit distance via dy-
namic embedding. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion, pages 5241–5250.
Zhang, X., Wang, L., and Su, Y. (2021). Visual place recog-
nition: A survey from deep learning perspective. Pat-
tern Recognition, 113:107760.