He, J., Deng, Z., Zhou, L., Wang, Y., and Qiao, Y.
(2019). Adaptive Pyramid Context Network for Se-
mantic Segmentation. In 2019 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 7511–7520.
Hoonhout, B. and Radermacher, M. (2014). Annotated im-
ages of the Dutch coast. https://doi.org/10.4121/uuid:
08400507-4731-4cb2-a7ec-9ed2937db119. [Online;
accessed 29-September-2022].
Hoonhout, B., Radermacher, M., Baart, F., and van der
Maaten, L. (2015). An automated method for seman-
tic classification of regions in coastal images. Coastal
Engineering, 105:1–12.
Jain, J., Singh, A., Orlov, N., Huang, Z., Li, J., Wal-
ton, S., and Shi, H. (2021). SeMask: Semanti-
cally Masked Transformers for Semantic Segmenta-
tion. arXiv, abs/2112.12782:1–14.
Khan, S., Naseer, M., Hayat, M., Zamir, S. W., Khan, F. S.,
and Shah, M. (2022). Transformers in Vision: A Sur-
vey. ACM Comput. Surv., 54(10s):1–41.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
ageNet Classification with Deep Convolutional Neu-
ral Networks. In Pereira, F., Burges, C., Bottou, L.,
and Weinberger, K., editors, Advances in Neural In-
formation Processing Systems, volume 25. Curran As-
sociates, Inc.
Lindsay, G. W. (2021). Convolutional neural networks as a
model of the visual system: Past, present, and future.
Journal of cognitive neuroscience, 33(10):2017–2031.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S.,
and Guo, B. (2021). Swin Transformer: Hierarchical
Vision Transformer using Shifted Windows. In 2021
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 9992–10002.
Peponi, A., Morgado, P., and Trindade, J. (2019). Combin-
ing Artificial Neural Networks and GIS Fundamentals
for Coastal Erosion Prediction Modeling. Sustainabil-
ity, 11(4):1–14.
Rao, Y., Zhao, W., Tang, Y., Zhou, J., Lim, S.-N., and Lu,
J. (2022). HorNet: Efficient High-Order Spatial In-
teractions with Recursive Gated Convolutions. ArXiv,
abs/2207.14284:1–15.
Redmon, J., Divvala, S. K., Girshick, R. B., and Farhadi,
A. (2015). You Only Look Once: Unified, Real-Time
Object Detection. CoRR, abs/1506.02640.
Samantaray, A., Yang, B., Dietz, J. E., and Min, B.-C.
(2018). Algae Detection Using Computer Vision and
Deep Learning.
Satyanarayanan, M. (2017). The Emergence of Edge Com-
puting. Computer, 50(1):30–39.
Shi, S., Wang, Q., Xu, P., and Chu, X. (2016a). Benchmark-
ing State-of-the-Art Deep Learning Software Tools. In
2016 7th International Conference on Cloud Comput-
ing and Big Data (CCBD), pages 99–104.
Shi, W., Cao, J., Zhang, Q., Li, Y., and Xu, L. (2016b). Edge
Computing: Vision and Challenges. IEEE Internet of
Things Journal, 3(5):637–646.
Strudel, R., Pinel, R. G., Laptev, I., and Schmid, C. (2021).
Segmenter: Transformer for Semantic Segmentation.
2021 IEEE/CVF International Conference on Com-
puter Vision (ICCV), pages 7242–7252.
Tsaih, R.-H. and Hsu, C. C. (2018). Artificial Intelligence
in Smart Tourism: A Conceptual Framework. In
Proceedings of The 18th International Conference on
Electronic Business, pages 124–133, Guilin, China.
Association for Information Systems.
Ullah, Z., Al-Turjman, F., Mostarda, L., and Gagliardi, R.
(2020). Applications of Artificial Intelligence and Ma-
chine learning in smart cities. Computer Communica-
tions, 154:313–323.
Ulrike Gretzel, Marianna Sigala, Z. X. and Koo, C. (2015).
Smart tourism: foundations and developments. In
Electron Markets, pages 179—-188.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin,
I. (2017). Attention is All you Need. In Guyon,
I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R., editors,
Advances in Neural Information Processing Systems,
volume 30, pages 5998–6008. Curran Associates, Inc.
Wang, Y., Chen, X., Wang, L., and Min, G. (2020). Ef-
fective IoT-Facilitated Storm Surge Flood Modeling
Based on Deep Reinforcement Learning. IEEE Inter-
net of Things Journal, 7(7):6338–6347.
Wang, Y. E., Wei, G.-Y., and Brooks, D. (2019). Bench-
marking TPU, GPU, and CPU Platforms for Deep
Learning. CoRR.
Wiersma, E. and Mastenbroek, N. (1997). Measurement of
Vessel Traffic Service Operator Performance. IFAC
Proceedings Volumes, 30(24):61–64. 6th IFAC Sym-
posium on Automated Systems Based on Human Skill
1997 (Joint Design of Technology and Organisation),
Kranjska gora, Slovenia, 17-19 September.
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J. M.,
and Luo, P. (2021). SegFormer: Simple and efficient
design for semantic segmentation with transformers.
Advances in Neural Information Processing Systems,
34:12077–12090.
Yang, C.-H., Wu, C.-H., and Hsieh, C.-M. (2020). Long
short-term memory recurrent neural network for tidal
level forecasting. IEEE Access, 8:159389–159401.
Yang, X., Sun, H., Fu, K., Yang, J., Sun, X., Yan, M.,
and Guo, Z. (2018). Automatic Ship Detection in Re-
mote Sensing Images from Google Earth of Complex
Scenes Based on Multiscale Rotation Dense Feature
Pyramid Networks. Remote Sensing, 10(1):1–14.
Yin, M., Yao, Z., Cao, Y., Li, X., Zhang, Z., Lin, S., and Hu,
H. (2020). Disentangled Non-Local Neural Networks.
CoRR, abs/2006.06668:191–207.
Zhang, H., Wu, C., Zhang, Z., Zhu, Y., Lin, H., Zhang, Z.,
Sun, Y., He, T., Mueller, J., Manmatha, R., Li, M.,
and Smola, A. (2022). ResNeSt: Split-Attention Net-
works. In 2022 IEEE/CVF Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW),
pages 2735–2745.
Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017).
Pyramid Scene Parsing Network. In 2017 IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), pages 6230–6239.
VISAPP 2023 - 18th International Conference on Computer Vision Theory and Applications
418