The American Journal of Sports Medicine, 24(2), 211–
217. https://doi.org/10.1177/036354659602400217 
Burr, D. B. (2011). Why bones bend but don’t break. 
Journal of Musculoskeletal & Neuronal Interactions, 
11(4), 270–285. 
Burr, D. B., Forwood, M. R., Fyhrie, D. P., Martin, R. B., 
Schaffler, M. B., & Turner, C. H. (1997). Bone 
microdamage and skeletal fragility in osteoporotic and 
stress fractures. Journal of Bone and Mineral Research: 
The Official Journal of the American Society for  
Bone and Mineral Research,  12(1), 6–15. 
https://doi.org/10.1359/jbmr.1997.12.1.6 
Burr, D. B., Milgrom, C., Fyhrie, D., Forwood, M., Nyska, 
M., Finestone, A., Hoshaw, S., Saiag, E., & Simkin, A. 
(1996). In vivo measurement of human tibial strains 
during vigorous activity. Bone, 18(5), 405–410. 
Derrick, T. R., Edwards, W. B., Fellin, R. E., & Seay, J. F. 
(2016). An integrative modeling approach for the 
efficient estimation of cross sectional tibial stresses 
during locomotion. Journal of Biomechanics,  49(3), 
429–435. https://doi.org/10.1016/j.jbiomech.2016.01.0 
03 
Edwards, W. B., Taylor, D., Rudolphi, T. J., Gillette, J. C., 
& Derrick, T. R. (2009). Effects of Stride Length and 
Running Mileage on a Probabilistic Stress Fracture 
Model.  Medicine & Science in Sports & Exercise, 
41(12), 2177–2184. https://doi.org/10.1249/MSS.0b01 
3e3181a984c4 
Edwards, W. B., Taylor, D., Rudolphi, T. J., Gillette, J. C., 
& Derrick, T. R. (2010). Effects of running speed on a 
probabilistic stress fracture model. Clinical 
Biomechanics (Bristol, Avon),  25(4), 372–377. 
https://doi.org/10.1016/j.clinbiomech.2010.01.001 
Ellison, M. A., Akrami, M., Fulford, J., Javadi, A. A., & 
Rice, H. M. (2020). Three dimensional finite element 
modelling of metatarsal stresses during running. 
Journal of Medical Engineering & Technology, 44(7), 
368–377. https://doi.org/10.1080/03091902.2020.1799 
092 
Ellison, M. A., Fulford, J., Javadi, A., & Rice, H. M. (2021). 
Do non-rearfoot runners experience greater second 
metatarsal stresses than rearfoot runners? Journal of 
Biomechanics,  126, 110647. https://doi.org/10.1016/ 
j.jbiomech.2021.110647 
Ellison, M. A., Kenny, M., Fulford, J., Javadi, A., & Rice, 
H. M. (2020). Incorporating subject-specific geometry 
to compare metatarsal stress during running with 
different foot strike patterns. Journal of Biomechanics, 
105, 109792. https://doi.org/10.1016/j.jbiomech.20 
20.109792 
Fetzer, G. B., & Wright, R. W. (2006). Metatarsal Shaft 
Fractures and Fractures of the Proximal Fifth 
Metatarsal. Clinics in Sports Medicine, 25
(1), 139–150. 
https://doi.org/10.1016/j.csm.2005.08.014 
Field, A. E., Gordon, C. M., Pierce, L. M., Ramappa, A., & 
Kocher, M. S. (2011). Prospective study of physical 
activity and risk of developing a stress fracture among 
preadolescent and adolescent girls. Archives of 
Pediatrics & Adolescent Medicine,  165(8), 723–728. 
https://doi.org/10.1001/archpediatrics.2011.34 
Firminger, C. R., Fung, A., Loundagin, L. L., & Edwards, 
W. B. (2017). Effects of footwear and stride length on 
metatarsal strains and failure in running. Clinical 
Biomechanics (Bristol, Avon),  49, 8–15. 
https://doi.org/10.1016/j.clinbiomech.2017.08.006 
Gross, T. S., & Bunch, R. P. (1989). A mechanical model 
of metatarsal stress fracture during distance running. 
The American Journal of Sports Medicine, 17(5), 669–
674. https://doi.org/10.1177/036354658901700514 
Iwamoto, J., & Takeda, T. (2003). Stress fractures in 
athletes: Review of 196 cases. Journal of Orthopaedic 
Science,  8(3), 273–278. https://doi.org/10.1007/ 
s10776-002-0632-5 
Knapik, J., Reynolds, K. L., & Harman, E. (2004). Soldier 
load carriage: Historical, physiological, biomechanical, 
and medical aspects. Military Medicine, 169(1), 45–56. 
Matijevich, E. S., Branscombe, L. M., Scott, L. R., & Zelik, 
K. E. (2019). Ground reaction force metrics are not 
strongly correlated with tibial bone load when running 
across speeds and slopes: Implications for science, 
sport and wearable tech. PLOS ONE, 14(1), e0210000. 
https://doi.org/10.1371/journal.pone.0210000 
Matijevich, E. S., Scott, L. R., Volgyesi, P., Derry, K. H., 
& Zelik, K. E. (2020). Combining wearable sensor 
signals, machine learning and biomechanics to estimate 
tibial bone force and damage during running. Human 
Movement Science,  74, 102690. https://doi.org/ 
10.1016/j.humov.2020.102690 
Meardon, S. A., & Derrick, T. R. (2014). Effect of step 
width manipulation on tibial stress during running. 
Journal of Biomechanics,  47(11), 2738–2744. 
https://doi.org/10.1016/j.jbiomech.2014.04.047 
Meardon, S. A., Willson, J. D., Gries, S. R., Kernozek, T. 
W., & Derrick, T. R. (2015). Bone stress in runners with 
tibial stress fracture. Clinical Biomechanics, 30(9), 895–
902. https://doi.org/10.1016/j.clinbiomech.2015.07.012 
Milgrom, C., Finestone, A., Simkin, A., Ekenman, I., 
Mendelson, S., Millgram, M., Nyska, M., Larsson, E., 
& Burr, D. (2000). In-vivo strain measurements to 
evaluate the strengthening potential of exercises on the 
tibial bone. The Journal of Bone and Joint Surgery. 
British Volume, 82(4), 591–594. 
Milgrom, C., Giladi, M., Stein, M., Kashtan, H., Margulies, 
J. Y., Chisin, R., Steinberg, R., & Aharonson, Z. (1985). 
Stress fractures in military recruits. A prospective study 
showing an unusually high incidence. The Journal of 
Bone and Joint Surgery. British Volume, 67(5), 732–735. 
https://doi.org/10.1302/0301-620X.67B5.4055871 
Nunns, M., House, C., Rice, H., Mostazir, M., Davey, T., 
Stiles, V., Fallowfield, J., Allsopp, A., & Dixon, S. 
(2016). Four biomechanical and anthropometric 
measures predict tibial stress fracture: A prospective 
study of 1065 Royal Marines. British Journal of Sports 
Medicine, bjsports-2015-095394. https://doi.org/10.11 
36/bjsports-2015-095394 
Orr, R. M., Pope, R., Johnston, V., & Coyle, J. (2014). 
Soldier occupational load carriage: A narrative review 
of associated injuries. International Journal of Injury 
Control and Safety Promotion,  21(4), 388–396. 
https://doi.org/10.1080/17457300.2013.833944