Carlier,  M.  (2021).  Worldwide  number  of  battery  electric 
vehicles  in  use  from  2016  to  2020:  (in  millions). 
Retrieved  from  https://www.statista.com/statistics/270 
603/worldwide-number-of-hybrid-and-electric-vehicle 
s-since-2009/ 
Codd,  E.  F.  (1970).  A  relational  model  of  data  for  large 
shared data banks. Communications of the ACM, 13(6), 
377–387. https://doi.org/10.1145/362384.362685 
Cui, Y., Kara, S., & Chan, K. C. (2020). Manufacturing big 
data ecosystem: A systematic literature review. Robotics 
and Computer-Integrated Manufacturing,  62,  101861. 
https://doi.org/10.1016/j.rcim.2019.101861 
Defranceski,  M.  (2021).  Auslesen  und  Nutzen  von 
Maschinendaten einfach gemacht. Wt Werkstattstechnik 
Online,  111(03),  159–160.  https://doi.org/10.37544/ 
1436–4980–2021–03–67 
Fensel, D., Şimşek, U., Angele, K., Huaman, E., Kärle, E., 
Panasiuk, O., Toma, I., Umbrich, J., Wahler, A. (2020). 
Why We Need Knowledge Graphs: Applications. In D. 
Fensel, U. Şimşek, K. Angele, E. Huaman, E. Kärle, O. 
Panasiuk,  Toma,  I.,  Umbrich,  J.,  A.  Wahler  (Eds.), 
Springer eBook Collection. Knowledge Graphs: 
Methodology, Tools and Selected Use Cases (1st ed., pp. 
95–112).  Cham:  Springer  International  Publishing; 
Imprint  Springer.  https://doi.org/10.1007/978-3-030-
37439-6_4 
Grevenitis,  K.,  Psarommatis,  F.  [F.],  Reina,  A.,  Xu,  W., 
Tourkogiorgis, I. [I.], Milenkovic, J., Cassina, J., Kiritsis, 
D. [D.] (2019).  A hybrid  framework for industrial data 
storage  and  exploitation.  Procedia CIRP,  81, 892–897. 
https://doi.org/10.1016/j.procir.2019.03.221 
Grimmel,  P.,  Wessel,  J.,  Mennenga,  M.,  &  Herrmann,  C. 
(2022).  Potentials  of  ontology-based  knowledge 
discovery  in  data  bases  for  Learning  Factories.  SSRN 
Electronic Journal. Advance  online  publication. 
https://doi.org/10.2139/ssrn.4073026 
Hao, Y., Qin, X., Chen, Y., Li, Y., Sun, X., Tao, Y., Zhang, 
X.,  Du,  X.  (2021).  TS-Benchmark:  A  Benchmark  for 
Time Series Databases. In 2021 IEEE 37th International 
Conference on Data Engineering (ICDE) (pp. 588–599). 
IEEE. https://doi.org/10.1109/ICDE51399.2021.00057 
Hasilová, K., & Vališ, D. (2018). Non-parametric estimates 
of the first hitting time of Li-ion battery. Measurement, 
113,  82–91.  https://doi.org/10.1016/j.measurement.20 
17.08.030 
Hildebrand, M., Tourkogiorgis, I. [Ioannis], Psarommatis, F. 
[Foivos], Arena, D., & Kiritsis, D. [Dimitris] (2019). A 
Method for Converting Current Data to RDF in the Era 
of Industry 4.0. In F. Ameri, K. E. Stecke, G. von 
Cieminski,  &  D.  Kiritsis  (Eds.),  IFIP Advances in 
Information and Communication Technology. Advances 
in Production Management Systems. Production 
Management for the Factory of the Future (Vol. 566, pp. 
307–314).  Cham:  Springer  International  Publishing. 
https://doi.org/10.1007/978-3-030-30000-5_39 
Kalaycı, E. G., Grangel González, I., Lösch, F., Xiao, G., ul-
Mehdi,  A.,  Kharlamov,  E.,  &  Calvanese,  D.  (2020). 
Semantic  Integration  of  Bosch  Manufacturing  Data 
Using  Virtual  Knowledge  Graphs.  In  J.  Z.  Pan,  V. 
Tamma, C. d’Amato, K. Janowicz, B. Fu, A. Polleres, O. 
Seneviratne, L. Kagal (Eds.), Springer eBook Collection: 
Vol. 12507. The Semantic Web – ISWC 2020: 19th 
International Semantic Web Conference, Athens, Greece, 
November 2–6, 2020, Proceedings, Part II (1st ed., Vol. 
12507,  pp.  464–481).  Cham:  Springer  International 
Publishing;  Imprint  Springer.  https://doi.org/10.1007/ 
978-3-030-62466-8_29 
Leavitt, N. (2010). Will NoSQL Databases Live Up to Their 
Promise?  Computer,  43(2),  12–14. 
https://doi.org/10.1109/MC.2010.58 
Malburg, L., Klein, P., & Bergmann, R. (2020, November 2 
-  2020,  November  4).  Semantic  Web  Services  for  AI-
Research  with  Physical  Factory  Simulation  Models  in 
Industry  4.0.  In  Proceedings of the International 
Conference on Innovative Intelligent Industrial 
Production and Logistics (pp.  32–43).  SCITEPRESS  - 
Science  and  Technology  Publications. 
https://doi.org/10.5220/0010135900320043 
O’Donovan, P., Leahy, K., Bruton, K., & O’Sullivan, D. T. J. 
(2015).  An  industrial  big  data  pipeline  for  data-driven 
analytics  maintenance  applications  in  large-scale  smart 
manufacturing  facilities.  Journal of Big Data,  2(1). 
https://doi.org/10.1186/s40537-015-0034-z 
Schel,  D.,  Henkel,  C.,  Stock,  D.,  Meyer,  O.,  Rauhöft,  G., 
Einberger,  P.,  Stöhr,  M.,  Daxer,  M.A.,  Seidelmann,  J. 
(2018). Manufacturing Service Bus: An Implementation. 
Procedia CIRP,  67,  179–184.  https://doi.org/10.1016/ 
j.procir.2017.12.196 
Tao, F.,  Qi,  Q., Liu,  A.,  &  Kusiak,  A.  (2018).  Data-driven 
smart manufacturing. Journal of Manufacturing Systems, 
48, 157–169. https://doi.org/10.1016/j.jmsy.2018.01.006 
Turetskyy,  A.,  Thiede,  S.,  Thomitzek,  M.,  Drachenfels,  N. 
von,  Pape,  T.,  &  Herrmann,  C.  (2020).  Toward  Data‐
Driven  Applications  in  Lithium‐Ion  Battery  Cell 
Manufacturing.  Energy Technology,  8(2),  1900136. 
https://doi.org/10.1002/ente.201900136 
Wessel,  J.,  Turetskyy,  A.,  Wojahn,  O.,  Abraham,  T.,  & 
Herrmann,  C.  (2021).  Ontology-based  Traceability 
System  for  Interoperable  Data  Acquisition  in  Battery 
Cell  Manufacturing.  Procedia CIRP,  104,  1215–1220. 
https://doi.org/10.1016/j.procir.2021.11.204 
Yen,  I.‑L.,  Zhang,  S.,  Bastani,  F.,  &  Zhang,  Y.  (2017).  A 
Framework for IoT-Based Monitoring and Diagnosis of 
Manufacturing  Systems.  In  Sose 2017: 11th IEEE 
International Symposium on Service-Oriented System 
Engineering: Proceedings: 6-9 April 2017, San 
Francisco, California (pp. 1–8). Piscataway, NJ: IEEE. 
https://doi.org/10.1109/SOSE.2017.26 
Yin, S., & Kaynak, O. (2015). Big Data for Modern Industry: 
Challenges and Trends [Point of View]. Proceedings of 
the IEEE,  103(2),  143–146.  https://doi.org/10.1109/J 
PROC.2015.2388958 
Zhong, R. Y., Xu,  X.,  Klotz,  E., & Newman, S. T. (2017). 
Intelligent Manufacturing in the Context of Industry 4.0: 
A  Review.  Engineering,  3(5),  616–630. 
https://doi.org/10.1016/J.ENG.2017.05.015