train more complex networks faster. Thus, we cannot 
make  a  comparison  between  our  results  and  those 
already published, but we can conclude that, despite 
our high FP values in this preliminary study, there is 
potential  to  improve  and  achieve  results  similar  to 
those of the masses. 
In conclusion, taking into account the preliminary 
results  presented,  we  conclude  that  detection  and 
location  of  MCs  in  DBT  can  be  automatically 
achieved  using  Faster  R-CNN  and  visualization  of 
these results can benefit from another approach such 
as 3D VR. 
ACKNOWLEDGEMENTS 
This work was supported by Universidade de Lisboa 
(PhD  grant)  and  Fundação  para  a  Ciência  e 
Tecnologia  –  Portugal  (Grant  No. 
SFRH/BD/135733/2018  and  FCT-IBEB  Strategic 
Project UIDB/00645/2020).  
REFERENCES 
Badano, A., Graff, C. G., Badal, A., Sharma, D., Zeng, R., 
Samuelson, F. W., Myers, K. J. (2018). Evaluation of 
Digital Breast Tomosynthesis as Replacement of Full-
Field  Digital  Mammography  Using  an  In  Silico 
Imaging  Trial.  JAMA Network Open, 1(7),  e185474-
e185474. doi: 10.1001/jamanetworkopen.2018.5474 
Bernardi, D., Macaskill, P., Pellegrini, M., Valentini, M., 
Fantò,  C.,  Ostillio,  L.,  Houssami,  N.  (2016).  Breast 
cancer  screening  with  tomosynthesis  (3D 
mammography)  with  acquired  or  synthetic  2D 
mammography  compared  with  2D  mammography 
alone  (STORM-2):  a  population-based  prospective 
study.  The Lancet Oncology, 17(8),  1105-1113.  doi: 
https://doi.org/10.1016/S1470-2045(16)30101-2 
Buda, M., Saha, A., Walsh, R., Ghate, S., Li, N., Święcicki, 
A., Mazurowski, M. A. (2020). Detection of masses and 
architectural distortions in digital breast tomosynthesis: 
a publicly available dataset of 5,060 patients and a deep 
learning  model.  arXiv:2011.07995.  Retrieved  from 
https://ui.adsabs.harvard.edu/abs/2020arXiv20110799
5B 
Bunch,  P.,  Hamilton,  J.,  Sanderson,  G.,  &  Simmons,  A. 
(1977).  A Free Response Approach To The 
Measurement And Characterization Of Radiographic 
Observer Performance (Vol. 0127): SPIE. 
Caumo, F., Zorzi, M., Brunelli, S., Romanucci, G., Rella, 
R.,  Cugola,  L.,  Houssami,  N.  (2018).  Digital  Breast 
Tomosynthesis  with  Synthesized  Two-Dimensional 
Images  versus  Full-Field  Digital  Mammography  for 
Population  Screening:  Outcomes  from  the  Verona 
Screening  Program.  Radiology, 287(1),  37-46.  doi: 
10.1148/radiol.2017170745 
Fan, M., Li, Y., Zheng, S., Peng, W., Tang, W., & Li, L. 
(2019).  Computer-aided  detection  of  mass  in  digital 
breast  tomosynthesis  using  a  faster  region-based 
convolutional neural network. Methods, 166, 103-111. 
doi: https://doi.org/10.1016/j.ymeth.2019.02.010 
Fan, M., Zheng, H., Zheng, S., You, C., Gu, Y., Gao, X., Li, 
L. (2020). Mass Detection and Segmentation in Digital 
Breast  Tomosynthesis  Using  3D-Mask  Region-Based 
Convolutional  Neural  Network:  A  Comparative 
Analysis. [Original Research]. Frontiers in Molecular 
Biosciences, 7(340). doi: 10.3389/fmolb.2020.599333 
Fenton,  J.  J., Taplin, S.  H.,  Carney, P. A.,  Abraham,  L., 
Sickles,  E.  A.,  D'Orsi,  C.,  Elmore,  J.  G.  (2007). 
Influence  of  Computer-Aided  Detection  on 
Performance  of  Screening  Mammography.  New 
England Journal of Medicine, 356(14), 1399-1409. doi: 
10.1056/NEJMoa066099 
Food  and  Drug  Administration  (FDA)  U.S.  .  (2013). 
Premarket  Approval  application  supplement  for  the 
Selenia Dimensions 3D System  Retrieved May, 2021 
Fotin,  S.,  Yin,  Y.,  Haldankar,  H.,  Hoffmeister,  J.,  & 
Periaswamy,  S.  (2016).  Detection of soft tissue 
densities from digital breast tomosynthesis: 
comparison of conventional and deep learning 
approaches (Vol. 9785): SPIE. 
Freer, P. E., Riegert, J., Eisenmenger, L., Ose, D., Winkler, 
N.,  Stein,  M.  A.,  Hess,  R.  (2017).  Clinical 
implementation  of  synthesized  mammography  with 
digital  breast  tomosynthesis  in  a  routine  clinical 
practice.  Breast Cancer Research and Treatment, 
166(2), 501-509. doi: 10.1007/s10549-017-4431-1 
Gilbert,  F.  J.,  Tucker,  L.,  Gillan,  M.  G.  C.,  Willsher,  P., 
Cooke, J., Duncan, K. A., Duffy, S. W. (2015). Accuracy 
of  Digital  Breast  Tomosynthesis  for  Depicting  Breast 
Cancer Subgroups in a UK Retrospective Reading Study 
(TOMMY  Trial).  Radiology, 277(3),  697-706.  doi: 
10.1148/radiol.20 15142566 
Girshick, R.  (2015).  Fast R-CNN.  Paper presented at  the 
Proceedings  of  the  IEEE  international  conference  on 
computer vision. 
Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). 
Rich feature hierarchies for accurate object detection 
and semantic segmentation. Paper presented at the 
Proceedings of the IEEE conference on computer vision 
and pattern recognition. 
Good, W. F., Abrams, G. S., Catullo, V. J., Chough, D. M., 
Ganott, M. A., Hakim, C. M., & Gur, D. (2008). Digital 
breast tomosynthesis: a pilot observer study. AJR Am J 
Roentgenol, 190(4), 865-869. doi: 10.2214/ajr.07.2841 
Gur,  D.,  Abrams,  G.  S.,  Chough,  D.  M.,  Ganott,  M.  A., 
Hakim,  C.  M.,  Perrin,  R.  L.,  Bandos,  A.  I.  (2009). 
Digital  breast  tomosynthesis:  observer  performance 
study.  AJR Am J Roentgenol, 193(2),  586-591.  doi: 
10.2214/ajr.08.2031 
Hofvind, S., Hovda, T., Holen, Å. S., Lee, C. I., Albertsen, 
J.,  Bjørndal,  H.,  Skaane,  P.  (2018).  Digital  Breast 
Tomosynthesis  and  Synthetic  2D  Mammography 
versus  Digital  Mammography:  Evaluation  in  a 
Population-based  Screening  Program.  Radiology, 
287(3), 787-794. doi: 10.1148/radiol.2018171361