REFERENCES 
Aljondi, R., & Alghamdi, S. (2020). Diagnostic value of 
imaging modalities for COVID-19: Scoping review. 
Journal of Medical Internet Research,  22(8). 
https://doi.org/10.2196/19673 
Chollet, F. (2016). Xception: Deep Learning with 
Depthwise Separable Convolutions. SAE International 
Journal of Materials and Manufacturing, 7(3), 1251–
1258. 
COVID-19 Radiography Database | Kaggle. (n.d.). 
Retrieved November 1, 2021, from https://www. 
kaggle.com/tawsifurrahman/covid19-radiography-
database 
Elmidaoui, S., Cheikhi, L., Idri, A., & Abran, A. (2020). 
Predicting software maintainability using ensemble 
techniques and stacked generalization. CEUR 
Workshop Proceedings, 2725, 1–16. 
Emerson, P. (2013). The original Borda count and partial 
voting.  Social Choice and Welfare,  40(2), 353–358. 
https://doi.org/10.1007/s00355-011-0603-9 
Goudouris, E. S. (2021). Laboratory diagnosis of COVID-
19.  Jornal de Pediatria,  97(1), 7–12. 
https://doi.org/10.1016/j.jped.2020.08.001 
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity 
mappings in deep residual networks. Lecture Notes in 
Computer Science (Including Subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in 
Bioinformatics),  9908 LNCS, 630–645. 
https://doi.org/10.1007/978-3-319-46493-0_38 
Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. 
Q. (2017). Densely connected convolutional networks. 
Proceedings - 30th IEEE Conference on Computer 
Vision and Pattern Recognition, CVPR 2017,  2017-
Janua, 2261–2269. https://doi.org/10.1109/CVPR.20 
17.243 
Huang, S. C., Pareek, A., Seyyedi, S., Banerjee, I., & 
Lungren, M. P. (2020). Fusion of medical imaging and 
electronic health records using deep learning: a 
systematic review and implementation guidelines. Npj 
Digital Medicine, 3(1). https://doi.org/10.1038/s41746-
020-00341-z 
Islam, M. M., Karray, F., Alhajj, R., & Zeng, J. (2021). A 
Review on Deep Learning Techniques for the 
Diagnosis of Novel Coronavirus (COVID-19). IEEE 
Access,  9, 30551–30572. https://doi.org/10.1109/ 
ACCESS.2021.3058537 
Rahimzadeh, M., & Attar, A. (2020). A modified deep 
convolutional neural network for detecting COVID-19 
and pneumonia from chest X-ray images based on the 
concatenation of Xception and ResNet50V2. 
Informatics in Medicine Unlocked,  19, 100360. 
https://doi.org/10.1016/j.imu.2020.100360 
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, 
L. C. (2018). MobileNetV2: Inverted Residuals and 
Linear Bottlenecks. Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern 
Recognition, 4510–4520. https://doi.org/10.1109/ 
CVPR.2018.00474 
Simonyan, K., & Zisserman, A. (2014). Very Deep 
Convolutional Networks for Large-Scale Image 
Recognition. 3rd International Conference on Learning 
Representations, ICLR 2015 - Conference Track 
Proceedings, 1–14. 
Szegedy, C., Ioffe, S., Vanhoucke, V., & Alemi, A. A. 
(2017). Inception-v4, inception-ResNet and the impact 
of residual connections on learning. 31st AAAI 
Conference on Artificial Intelligence, AAAI 2017, 
4278–4284. 
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., & Wojna, 
Z. (2016). Rethinking the Inception Architecture for 
Computer Vision. Proceedings of the IEEE Computer 
Society Conference on Computer Vision and Pattern 
Recognition, 2016-Decem, 2818–2826. https://doi.org/ 
10.1109/CVPR.2016.308 
Tantithamthavorn, C., McIntosh, S., Hassan, A. E., & 
Matsumoto, K. (2019). The Impact of Automated 
Parameter Optimization on Defect Prediction Models. 
IEEE Transactions on Software Engineering,  45(7), 
683–711. https://doi.org/10.1109/TSE.2018.2794977 
Weekly epidemiological update on COVID-19 - 19 October 
2021. (n.d.). Retrieved October 31, 2021, from 
https://www.who.int/publications/m/item/weekly-
epidemiological-update-on-covid-19---19-october-
2021 
Wu, X., Hui, H., Niu, M., Li, L., Wang, L., He, B., Yang, 
X., Li, L., Li, H., Tian, J., & Zha, Y. (2020). Deep 
learning-based multi-view fusion model for screening 
2019 novel coronavirus pneumonia: A multicentre 
study. European Journal of Radiology, 128(March), 1–
9. https://doi.org/10.1016/j.ejrad.2020.109041 
Xu, M., Ouyang, L., Han, L., Sun, K., Yu, T., Li, Q., Tian, 
H., Safarnejad, L., Zhang, H., Gao, Y., Bao, F. S., Chen, 
Y., Robinson, P., Ge, Y., Zhu, B., Liu, J., & Chen, S. 
(2021). Accurately differentiating between patients 
with COVID-19, patients with other viral infections, 
and healthy individuals: Multimodal late fusion 
learning approach. Journal of Medical Internet 
Research, 23(1), 1–17. https://doi.org/10.2196/25535 
Yang, X., He, X., Zhao, J., Zhang, Y., Zhang, S., & Xie, P. 
(2020). COVID-CT-Dataset: A CT Scan Dataset about 
COVID-19. http://arxiv.org/abs/2003.13865 
Zhang, Y. D., Zhang, Z., Zhang, X., & Wang, S. H. (2021). 
MIDCAN: A multiple input deep convolutional 
attention network for Covid-19 diagnosis based on 
chest CT and chest X-ray. Pattern Recognition Letters, 
150, 8–16. https://doi.org/10.1016/j.patrec.2021.06.021 
Zhou, J., Zhang, X., Zhu, Z., Lan, X., Fu, L., Wang, H., & 
Wen, H. (2021). Cohesive Multi-modality Feature 
Learning and Fusion for COVID-19 Patient Severity 
Prediction. IEEE Transactions on Circuits and Systems 
for Video Technology
, 1–16. https://doi.org/10.1109/ 
TCSVT.2021.3063952