Arnoldt,  A.,  König,  S.,  Mikut,  R.,  &  Bretschneider,  P. 
(2010). Application of Data Mining Methods for Power 
Forecast of Wind Power Plants. Proc., 9th International 
Workshop  on  Large-scale  Integration  of  Wind  Power 
and Transmission Networks for Offshore Wind Farms, 
Quebec. 
Aurino, F., Folla, M., Gargiulo, F., Moscato, V., Picariello, 
A.,  &  Sansone,  C.  (2014).  One-class  SVM  based 
approach  for  detecting  anomalous  audio  events. 
International Conference on Intelligent Networking and 
Collaborative Systems, (pp. 145-151). IEEE. 
Bernhard, J., Schulik, T., Schutera, M., & Sax, E. (2021/2). 
Adaptive test case selection for DNN-based perception 
functions.  IEEE  International  Symposium  on  Systems 
Engineering (ISSE), (pp. 1-7). IEEE. 
Bernhard, J., Schutera, M., & Sax, E. (2021/1). Optimizing 
test-set  diversity:  Trajectory  clustering  for  scenario-
based  testing  of  automated  driving  systems.  IEEE 
International  Intelligent  Transportation  Systems 
Conference (ITSC), (pp. 1371-1378). IEEE. 
Chan,  C.  F.,  &  Eric,  W.  M.  (2010).  An  abnormal  sound 
detection  and  classification  system  for  surveillance 
applications.  18th  European  Signal  Processing 
Conference, (pp. 1851-1855). IEEE, 
Chang, F. K., Markmiller, J. F., Yang, J., & Kim, Y. (2011). 
Structural  health  monitoring.  System  health 
management: with aerospace applications. John Wiley 
& Sons. 
Dufaux,  A.,  Besacier,  L.,  Ansorge, M., & Pellandini, F. 
(2000). Automatic sound detection and recognition for 
noisy  environment.  10th  European  Signal  Processing 
Conference. IEEE. 
Feng, Y., Qiu, Y., Crabtree, C. J., Long, H., & Tavner, P. J. 
(2013).  Monitoring  wind  turbine  gearboxes.  (W.  O. 
Library, Ed.) Wind Energy, 16(5), 728-740. 
Gautam,  J.  K.,  Kumar,  A.,  &  Saxena,  R.  (1996).  On  the 
modified  Bartlett-Hanning  window  (family).  IEEE 
Transactions on Signal Processing, 44(8), 2098-2102. 
Gong,  X.,  &  Qiao,  W.  (2014). Current-based  mechanical 
fault  detection  for  direct-drive  wind  turbines  via 
synchronous  sampling  and  impulse  detection.  (IEEE, 
Ed.) IEEE Transactions on Industrial Electronics, 62(3), 
1693-1702. 
Hofmockel, J., & Sax, E. (2018).  Isolation  Forest  for 
Anomaly  Detection  in  Raw  Vehicle  Sensor  Data. 
International  Conference  on  Vehicle  Technology  and 
Intelligent Transport Systems (VEHITS). 
Kawaguchi,  Y.,  &  Endo,  T.  (2017).  How  can  we  detect 
anomalies from subsampled  audio  signals? 27th IEEE 
International  Workshop  on  Machine  Learning  for 
Signal Processing (MLSP), (pp. 1-6). IEEE. 
Koizumi,  Y.  a.  (2018).  Unsupervised  detection  of 
anomalous  sound  based  on  deep  learning  and  the 
neyman- pearson lemma. IEEE/ACM Trans-actions on 
Audio, Speech, and Language  Processing.  27(1),  212-
224. 
Koizumi, Y., Saito, S., Uematsu, H., Harada, N., & Imoto, 
K.  (2019).  ToyADMOS:  A  dataset  of  miniature-
machine  operating  sounds  for  anomalous  sound 
detection.  IEEE  Workshop  on  Applications  of  Signal 
Processing  to  Audio  and  Acoustics  (WASPAA),  (pp. 
313-317). IEEE. 
Koizumi,  Y.,  Kawaguchi,  Y.,  Imoto,  K.,  Nakamura,  T., 
Nikaido,  Y.,  Tanabe,  R.,  ...  &  Harada,  N.  (2020). 
Description and  discussion  on  DCASE2020  challenge 
task2:  Unsupervised  anomalous  sound  detection  for 
machine  condition  monitoring.  arXiv  preprint 
arXiv:2006.05822. 
Masino,  J.,  Pinay,  J.,  Reischl,  M.,  &  Gauterin,  F.  (2017). 
Road surface prediction from acoustical measurements 
in the tire cavity using support vector machine. Applied 
Acoustics, 125 41-48. 
Purohit, H., Tanabe, R., Ichige, K., Endo, T., Nikaido, Y., 
Suefusa, K., & Kawaguchi, Y. (2019). MIMII Dataset: 
Sound  Dataset  for  Malfunctioning  Industrial  Machine 
Investigation  and  Inspection.  Proceedings  of  the 
Detection  and  Classification  of  Acoustic  Scenes  and 
Events 2019 Workshop (DCASE2019), (pp. 209-213). 
Schutera, M., Hafner, F. M., Vogt, H., Abhau, J., & Reischl, 
M. (2019). Domain is of the Essence: Data Deployment 
for City-Scale Multi-Camera Vehicle Re-Identification. 
16th  IEEE  Inter-national  Conference  on  Advanced 
Video and Signal Based Surveillance (AVSS). (pp 1-6). 
IEEE. 
Schutera, M., Hussein, M., Abhau, J., Mikut, R., & Reischl, 
M.  (2020).  Night-to-Day:  Online  Image-to-Image 
Translation  for  Object  Detection  Within  Autonomous 
Driving  by  Night.  IEEE  Trans-actions  on  Intelligent 
Vehicles. 
Serizel, R.,  &  Turpault,  N. (2019).  Sound  event  detection 
from  partially  annotated  data:  Trends  and  challenges. 
IcETRAN conference. 
Sharma, S., & Mahto, D. G. (2013). Condition monitoring 
of  wind  turbines:  a  review.  Global  Journal  of 
Researches in Engineering, Mechanical and Mechanics 
Engineering, 13(6). 
Sheng,  S.  (2011/2).  Investigation  of  various  condition 
monitoring techniques based on a damaged wind turbine 
gearbox  (No.  NREL/CP-5000-51753).  National 
Renewable  Energy  Lab.(NREL),  Golden,  CO  (United 
States). 
Sheng,  S.  (2014).  Wind  turbine  gearbox  condition  moni-
toring  vibration  analysis  benchmarking  datasets. 
National Renewable Energy Laboratory, Golden. 
Sheng, S., Link, H., LaCava, W., van Dam, J., McNiff, B., 
Veers,  P.,  ...  &  Oyague,  F.  (2011/1).  Wind  turbine 
drivetrain  condition  monitoring  during  GRC  phase  1 
and  phase  2  testing  (No.  NREL/TP-5000-52748). 
National Renewable Energy Lab.(NREL), Golden, CO 
(United States). 
Wang, L.,  Zhang,  Z.,  Long, H.,  Xu,  J., &  Liu,  R.  (2016). 
Wind  turbine  gearbox  failure  identification  with  deep 
neural  networks.  IEEE  Transactions  on  Industrial 
Informatics, 13(3), 1360-1368. 
Zappalá,  D.,  Tavner,  P.  J.,  Crabtree,  C.  J.,  &  Sheng,  S. 
(2014). Side-band algorithm for automatic wind turbine 
gearbox fault detection and diagnosis. (W. O. Library, 
Ed.) IET Renewable Power Generation, 8(4), 380-389.