92.42%
6  CONCLUSION 
In  this  paper,  we  have  described  the  EMNIST 
benchmark  dataset  alongside  Deep  Convolutional 
Neural Networks architectures and hyperparameters. 
By  tuning  hyperparameters  of  CNNs,  we  have 
achieved  excellent  results  that  compare  favourably 
with  other  work  under the  same  scope.  We  believe 
that  further  tuning  would  lead  to  better  outcomes. 
Thus  we  intend  to  evaluate  deeper  architectures  of 
the  CNNs  with  larger  hyperparameters  tuning  to 
enhance performances even further. 
REFERENCES 
Baldominos, A., Saez, Y., & Isasi, P. (2019). Hybridizing 
Evolutionary  Computation  and  Deep  Neural 
Networks:  An  Approach  to  Handwriting  Recognition 
Using  Committees  and  Transfer  Learning. 
Complexity,  2019,  1–16. 
https://doi.org/10.1155/2019/2952304 
Cavalin,  P.,  &  Oliveira,  L.  (2019).  Confusion  Matrix-
Based  Building  of  Hierarchical  Classification.  In  R. 
Vera-Rodriguez,  J.  Fierrez,  &  A.  Morales  (Eds.), 
Progress  in  Pattern  Recognition,  Image  Analysis, 
Computer  Vision,  and  Applications  (Vol.  11401,  pp. 
271–278).  Springer  International  Publishing. 
https://doi.org/10.1007/978-3-030-13469-3_32 
Ciresan,  D.  C.,  Meier,  U.,  Gambardella,  L.  M.,  & 
Schmidhuber,  J.  (2011).  Convolutional  Neural 
Network  Committees  for  Handwritten  Character 
Classification.  2011  International  Conference  on 
Document  Analysis  and  Recognition,  1135–1139. 
https://doi.org/10.1109/ICDAR.2011.229 
Cohen, G., Afshar, S., Tapson, J., & van Schaik, A. 
(2017).  EMNIST:  An  extension  of  MNIST  to 
handwritten  letters.  ArXiv:1702.05373  [Cs]. 
http://arxiv.org/abs/1702.05373 
Grother,  P.  (1995).  NIST  Special  Database  19 
Handprinted  Forms  and  Characters  Database. 
/paper/NIST-Special-Database-19-Handprinted-
Forms-and-
Grother/1ea788f1f4334095d215afd4c137936ff89d7f6
8 
Hinton,  G.  (2012).  Lecture  Notes  On  RMSprop. 
http://www.cs.toronto.edu/~hinton/coursera/lecture6/le
c6.pdf 
Hussain, R., Raza, A., Siddiqi, I., Khurshid, K., & Djeddi, 
C.  (2015).  A  comprehensive  survey  of  handwritten 
document  benchmarks:  Structure,  usage  and 
evaluation.  EURASIP  Journal  on  Image  and  Video 
Processing,  2015(1),  46. 
https://doi.org/10.1186/s13640-015-0102-5 
Ioffe,  S.,  &  Szegedy,  C.  (2015).  Batch  Normalization: 
Accelerating  Deep  Network  Training  by  Reducing 
Internal  Covariate  Shift.  ArXiv:1502.03167  [Cs]. 
http://arxiv.org/abs/1502.03167 
Khan,  A.,  Sohail,  A.,  Zahoora,  U.,  &  Qureshi,  A.  S. 
(2020).  A  survey  of  the  recent  architectures  of  deep 
convolutional  neural  networks.  Artificial  Intelligence 
Review,  53(8),  5455–5516. 
https://doi.org/10.1007/s10462-020-09825-6 
Kingma,  D.  P.,  &  Ba,  J.  (2017).  Adam:  A  Method  for 
Stochastic  Optimization.  ArXiv:1412.6980  [Cs]. 
http://arxiv.org/abs/1412.6980 
Le Cun, Y., Jackel, L. D., Boser, B., Denker, J. S., Graf, 
H.  P.,  Guyon,  I.,  Henderson,  D.,  Howard,  R.  E.,  & 
Hubbard,  W.  (1989).  Handwritten  digit  recognition: 
Applications  of  neural  network  chips  and  automatic 
learning.  IEEE  Communications  Magazine,  27(11), 
41–46. https://doi.org/10.1109/35.41400 
Misra,  D.  (2019).  Mish:  A  Self  Regularized  Non-
Monotonic  Activation  Function.  ArXiv:1908.08681 
[Cs, Stat]. https://doi.org/1908.08681 
Peng, Y., & Yin, H. (2017). Markov Random Field Based 
Convolutional  Neural  Networks  for  Image 
Classification. In H. Yin, Y. Gao, S. Chen, Y. Wen, G. 
Cai,  T.  Gu,  J.  Du,  A.  J.  Tallón-Ballesteros,  &  M. 
Zhang  (Eds.),  Intelligent  Data  Engineering  and 
Automated Learning – IDEAL 2017  (Vol. 10585, pp. 
387–396).  Springer  International  Publishing. 
https://doi.org/10.1007/978-3-319-68935-7_42 
Ruder,  S.  (2017).  An  overview  of  gradient  descent 
optimization  algorithms.  ArXiv:1609.04747  [Cs]. 
http://arxiv.org/abs/1609.04747 
Sen  Sharma,  A.,  Ahmed  Mridul,  M.,  Jannat,  M.-E.,  & 
Saiful  Islam,  M.  (2018).  A  Deep  CNN  Model  for 
Student Learning Pedagogy Detection Data Collection 
Using OCR. 2018 International Conference on Bangla