retinal  images  based  on  convolutional  kernels  and 
modified  u-net  model.  Computer Methods and 
Programs in Biomedicine, 205, 106 081. 
Jain, A., Yadav, D., and Arora, A. (2021). Particle swarm 
optimization  for  Punjabi  text  summarization. 
International Journal of Operations Research and 
Information Systems (IJORIS), 12(3): 1-17. IGI Global. 
Jebaseeli,  T.  J.,  Durai,  C. A.  D.,  and  Peter,  J.  D.  (2019). 
Segmentation  of  retinal  blood  vessels  from 
ophthalmologic  diabetic  retinopathy  images. 
Computers & Electrical Engineering, 73: 245-258.  
Marın, D., Aquino, A., Gegu´ndez-Arias, M. E., and Bravo, 
J. M. (2010). A new supervised method for blood vessel 
segmentation in retinal images by using gray-level and 
moment invariants-based features. IEEE Transactions 
on Medical Imaging, 30(1): 146–158. 
Moccia, S., Momi, E. De., Hadji, S. El., and Leonardo, S. 
(2018). Mattos Blood vessel segmentation algorithms- 
Review  of  methods,  datasets  and  evaluation  metrics. 
Computer Methods and Programs in Biomedicine,  
158: 71-91.  
Noh,  K.  J.,  Park,  S.  J.,  and  Lee,  S.  (2019).  Scale-space 
approximated convolutional neural networks for retinal 
vessel segmentation. Computer Methods and Programs 
in Biomedicine, 178: 237-246.  
Odstrcilik, J.,  Kolar,  R., Budai, A., Hornegger,  J.,  Jan,  J. 
Gazarek, J., Kubena, T., Cernosek, P., Svoboda, O., and 
Angelopoulou, E. (2013). Retinal vessel segmentation 
by  improved  matched  filtering:  Evaluation  on  a  new 
high-resolution  fundus  image  database.  IET Image 
Processing, 7(4): 373–383. 
Rajagopalan, N., Venkateswaran, N., Josephraj, A. N., and 
Srithaladevi, E. (2021). Diagnosis  of  retinal  disorders 
from  optical  coherence  tomography  images  using 
CNN. PLOS One, 16(7), e0254180. 
Saroj, S. K., Kumar, R., and Singh, N. P. (2020). Frechet 
pdf  based  matched  filter  approach  for  retinal  blood 
vessels  segmentation.  Computer Methods and 
Programs in Biomedicine, 194, 105 490.  
Siddiqui, F., Gupta, S., Dubey, S., Murtuza, S., and Jain, A. 
(2020). Classification and diagnosis of invasive ductal 
carcinoma  using  deep  learning.  In Proceedings of the 
10th International Conference on Cloud Computing, 
Data Science & Engineering (CONFLUENCE 2020), 
242-247. IEEE.  
Singh,  N.  P.  and  Srivastava,  R.  (2016).  Segmentation  of 
retinal blood vessels by using a matched filter based on 
second  derivative  of  Gaussian.  International  
Journal of Biomedical Engineering and Technology, 
21(3): 229-246. 
Soomro, T. A., Khan, T. M., Khan, M. A., Gao, J., Paul, M., 
and  Zheng,  L.  (2018).  Impact  of  ICA-based  image 
enhancement  technique  on  retinal  blood  vessels 
segmentation. IEEE Access, 6, 3524-3538. 
Soomro, T. A., Afifi, A. J., Shah, A. A., Soomro, S., Baloch, 
G. A., Zheng, L., Yin, M., and Gao, J. (2019). Impact 
of  image  enhancement  technique  on  CNN  model  for 
retinal  blood  vessels  segmentation. IEEE Access, 7, 
158183-158197. 
Sreejini, K., and Govindan, V. (2015). Improved multiscale 
matched filter for retina vessel segmentation using PSO 
algorithm.  Egyptian Informatics Journal,  16(3):  253-
260. 
Staal, J., Abràmoff,  M.  D.,  Niemeijer, M., Viergever, M. 
A., and Ginneken, B. Van. (2004). Ridge-based vessel 
segmentation  in  color  images  of  the  retina.  IEEE 
Transactions on Medical Imaging, 23(4): 501-509. 
Sun,  J.,  Wan,  C.,  Cheng,  J.,  Yu,  F.,  and  Liu,  J.  (2017). 
Retinal  image  quality  classification  using  fine-tuned 
CNN. In Fetal, Infant and Ophthalmic Medical Image 
Analysis, pp. 126-133. Springer. 
Wang,  X.,  Jiang,  X.,  and  Ren,  J.  (2019).  Blood  vessel 
segmentation  from  fundus  image  by  a  cascade 
classification  framework.  Pattern Recognition,  
88: 331-341. 
Yao,  Z.,  Zhang,  Z.,  and  Xu,  L. Q.  (2016).  Convolutional 
neural network for retinal blood vessel segmentation. In 
Proceedings of the 9th International Symposium on 
Computational Intelligence and Design (ISCID),  1: 
406-409. IEEE. 
END NOTES 
i
  Facts  &  Figures:  Accessed  on  Feb  2021. 
https://www.idf.org/aboutdiabetes/what-is-diabetes/facts-
figures.html