study  of  siri,  alexa,  and  google  assistant.  Journal of 
Medical Internet Research,  20(9),  e11510. 
https://doi.org/10.2196/11510 
Car, L. T., Dhinagaran, D. A., Kyaw, B. M., Kowatsch, T., 
Joty,  S.,  Theng,  Y.  L.,  &  Atun,  R.  (2020). 
Conversational  agents  in  health  care:  Scoping  review 
and conceptual analysis. In Journal of Medical Internet 
Research  (Vol.  22,  Issue  8,  p.  e17158).  JMIR 
Publications. https://doi.org/10.2196/17158 
Crunchbase.  (n.d.).  Crunchbase [home page on the 
internet].  Retrieved  November  29,  2020,  from 
https://www.crunchbase.com/ 
Garg, S. K., & Parkin, C. G. (2019). The Emerging Role of 
Telemedicine  and  Mobile  Health  Technologies  in 
Improving  Diabetes  Care.  Diabetes Technology and 
Therapeutics,  21(S2),  S2-1-S2-3. 
https://doi.org/10.1089/dia.2019.0090 
Hauser-Ulrich,  S.,  Künzli,  H.,  Meier-Peterhans,  D.,  & 
Kowatsch, T. (2020). A smartphone-based health care 
chatbot  to  promote  self-management  of  chronic  pain 
(SELMA):  Pilot  randomized  controlled  trial.  JMIR 
MHealth and UHealth,  8(4),  e15806. 
https://doi.org/10.2196/15806 
IDC.  (2020).  Introduction - WHO guideline 
Recommendations on Digital Interventions for Health 
System Strengthening - NCBI Bookshelf. 
https://www.ncbi.nlm.nih.gov/books/NBK541905/ 
International  Diabetes  Federation.  (2019).  IDF Diabetes 
Atlas 9th edition. 
King, A. C., Campero, M. I., Sheats, J. L., Castro Sweet, C. 
M., Hauser, M. E., Garcia, D., Chazaro, A., Blanco, G., 
Banda, J., Ahn, D. K., Fernandez, J., & Bickmore, T. 
(2020). Effects of counseling by peer human advisors 
vs  computers  to  increase  walking  in  underserved 
populations: The COMPASS randomized clinical trial. 
JAMA Internal Medicine,  180(11),  1481–1490. 
https://doi.org/10.1001/jamainternmed.2020.4143 
Kowatsch,  T.,  Schachner,  T.,  Harperink,  S.,  Barata,  F., 
Dittler, U., Xiao, G., Stanger, C., von Wangenheim, F., 
Fleisch,  E.,  Oswald,  H.,  &  Möller,  A.  (2020). 
Conversational  Agents  as  Mediating  Social  Actors  in 
Chronic  Disease  Management  Involving  Healthcare 
Professionals,  Patients,  and  Family  Members.  JMIR 
Preprints #25060. 
https://preprints.jmir.org/preprint/25060 
Kvedar, J. C., Fogel, A. L., Elenko, E., & Zohar, D. (2016). 
Digital  medicine’s  march  on  chronic  disease.  Nature 
Biotechnology,  34(3),  239–246. 
https://doi.org/10.1038/nbt.3495 
Laranjo,  L.,  Dunn,  A.  G.,  Tong,  H.  L.,  Kocaballi,  A.  B., 
Chen, J., Bashir, R., Surian, D., Gallego, B., Magrabi, 
F., Lau, A. Y. S., & Coiera, E. (2018). Conversational 
agents in healthcare: A systematic review. In Journal of 
the American Medical Informatics Association (Vol. 
25, Issue 9, pp. 1248–1258). Oxford University Press. 
https://doi.org/10.1093/jamia/ocy072 
Ma,  T.,  Chattopadhyay,  D.,  &  Sharifi,  H.  (2019).  Virtual 
humans  in  health-related  interventions:  A  meta-
analysis. Conference on Human Factors in Computing 
Systems - Proceedings,  1–6. 
https://doi.org/10.1145/3290607.3312853 
Montenegro, J. L. Z., da Costa, C. A., & da Rosa Righi, R. 
(2019).  Survey  of  conversational  agents  in  health.  In 
Expert Systems with Applications  (Vol.  129,  pp.  56–
67).  Elsevier  Ltd. 
https://doi.org/10.1016/j.eswa.2019.03.054 
O’brien,  J.  D.  (2017).  Chatbots for Diabetes Self-
Management: Diabetes coaching at scale. 
PitchBook. (n.d.). PitchBook [home page on the Internet]. 
Retrieved  November  29,  2020,  from 
https://pitchbook.com/ 
Ramchandani,  N.  (2019).  Virtual  Coaching  to  Enhance 
Diabetes Care. Diabetes Technology and Therapeutics, 
21(S2),  S2-48-S2-51. 
https://doi.org/10.1089/dia.2019.0016 
Retterath, A., & Braun, R. (2020). Benchmarking Venture 
Capital Databases. https://ssrn.com/abstract=3706108 
Rui,  P.,  Hing,  E.,  &  Okeyode,  T.  (2014).  National 
Ambulatory Medical Care Survey: 2014 State and 
National Summary Tables. 
https://www.cdc.gov/nchs/ahcd/ahcd_products.htm 
Schachner,  T.,  Keller,  R.,  &  V  Wangenheim,  F.  (2020). 
Artificial Intelligence-Based Conversational Agents for 
Chronic  Conditions:  Systematic  Literature  Review. 
Journal of Medical Internet Research, 22(9),  e20701. 
https://doi.org/10.2196/20701 
Sosale, A. R., Shaik, M., Shah, A., Chawla, R., Makkar, B. 
M., Kesavadev, J., Joshi, S., Deshpande, N., Agarwal, 
S., Mahseshwari, A., Madhu, S., & Saboo, B. D. (2018). 
Real-World  Effectiveness  of  a  Digital  Therapeutic  in 
Improving Glycaemic Control in South Asians Living 
with  Type  2  Diabetes.  Diabetes,  67(Supplement  1), 
866-P. https://doi.org/10.2337/db18-866-p 
Stein,  N.,  Delury,  K.,  &  Paruthi,  J.  (2020).  One-Year 
Clinical Outcomes of an Artificial Intelligence-Based 
Digital Diabetes Prevention Program. 
Stein, N., Ku, R., & Mao, T. (2019). Clinical outcomes from 
older adults in a digital diabetes pre-vention program. 
https://doi.org/10.2337/dci18-0007 
WHO.  (2016).  WHO Global Report. Global Report on 
Diabetes. 
World  Health  Organization.  (2018).  Classification of 
Digital Health Interventions v 1.0: a shared language 
to describe the uses of digital technology for health. 
http://apps.who.int/iris/bitstream/handle
/10665/260480/WHO-RHR-18.06-eng.pdf 
Wu,  X.,  Guo,  X.,  &  Zhang,  Z.  (2019).  The  efficacy  of 
mobile  phone  apps  for  lifestyle  modification  in 
diabetes: Systematic review and meta-analysis. In JMIR 
mHealth and uHealth  (Vol.  7,  Issue  1).  JMIR 
Publications. https://doi.org/10.2196/12297