few of these are recognized together. This is due to 
the  fact  that  ambiguous  emotions  share  common 
characteristics,  i.e.,  there  is  no  a  prototypical 
representation  of  these  emotions,  reason  why  they 
cannot  be  easily  differentiated  when  recognized 
together. 
REFERENCES 
Alessandrini,  M.,  Micarelli,  A.,  Viziano,  A.,  Pavone,  I., 
Costantini,  G.,  Casali,  D.,  Paolizzo,  F.,  Saggio,  G. 
(2017).  Body-worn  triaxial  accelerometer  coherence 
and  reliability  related  to  static  posturography  in 
unilateral  vestibular  failure.  Acta 
Otorhinolaryngologica Italica, 37(3). 
Asci,  F.,  Costantini,  G.,  Di  Leo,  P.,  Zampogna,  A., 
Ruoppolo, G., Berardelli, A., Saggio, G., & Suppa, A. 
(2020). Machine-Learning Analysis of Voice Samples 
Recorded through Smartphones: The Combined Effect 
of Ageing and Gender. Sensors, 20(18), 5022. 
Austermann, A., Esau, N., Kleinjohann,  L.,  Kleinjohann, 
B..  (2005).  Prosody  based  emotion  recognition  for 
MEXI.    IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS), 1138–1144. 
Borchert, M., Dusterhoft, A. (2005). Emotions  in speech-
experiments  with  prosody  and  quality  features  in 
speech for use in categorical and dimensional emotion 
recognition  environments. IEEE Proceedings of 
NLPKE, 147–151. 
Busso,  C.,  Bulut,  M.,  Narayanan,  S.  S.,  (2012).  Toward 
effective automatic recognition systems of emotion in 
speech.  In:  J.  Gratch  -  S.  Marsella  (Eds.),  Social 
emotions in nature and artifact: emotions in human and 
human-computer interaction, 110–127. 
Chateau, N., Maffiolo, V., Blouin, C., (2004). Analysis of 
emotional  speech  in  voice  mail  messages:  The 
influence  of  speakers’  gender.  International 
Conference on Speech and Language Processing 
(ICSLP). 
Clavel, C., Vasilescu, I., Devillers, L., Ehrette, T., Richard, 
G., Vasilescu, I., Devillers, L., Ehrette, T., Richard, G., 
(2006a).  Fear-type  emotions  of  the  safe  corpus: 
annotation  issues.  Proc. 5th Int. Conf. on Language 
Resources and Evaluation (LREC). 
Clavel, C., Vasilescu, I., Richard, G., Devillers, L., (2006b). 
Voiced and Unvoiced content of fear-type emotions in 
the  SAFE  Corpus.   Speech Prosody, Dresden–to  be 
published. 
Costantini, G., Todisco, M., Perfetti, R., Basili, R., & 
Casali, D. (2010a). SVM Based Transcription System 
with  Short-Term  Memory  Oriented  to  Polyphonic 
Piano  Music. Mediterranean Electrotechnical 
Conference (MELECON) 201 
Costantini, Giovanni, Casali,  D.,  &  Todisco, M. (2010b). 
An SVM based classification method for EEG signals. 
Proceedings of the 14th WSEAS international 
conference on Circuits, 107–109. 
Costantini, G., Iaderola, I., Paoloni, A., Todisco, M. (2014). 
EMOVO  Corpus:  An  Italian  emotional  speech 
database. LREC. 
Cowie, R., Douglas-Cowie, E., Tspatsoulis, N., Votsis, G., 
Kollias, S., Fellenz, W., Taylor, J. G.,(2001). Emotion 
recognition  in  human-computer  interaction. IEEE 
Signal Processing Magazine, 18 (1), 32–80. 
Cowie,  R.,  Cornelius,  R.  R.,  (2003).  Describing  the 
emotional  states  that  are  expressed  in  speech. Speech 
Communication, 40 (1–2). 
Cowie,  R.,  Douglas-Cowie,  E.,  Cox,  C.,  (2005).  Beyond 
emotion  archetypes:  databases  for  emotion  modelling 
using neural networks. Neural Networks, 18, 371–388. 
Cullen, C.,  Vaughan,  B.,  Kousidis,  S.,  (2008).  Emotional 
speech corpus construction, annotation and distribution. 
Proceedings of the 6th International Conference on 
Language Resources and Evaluation. 
Ekman, P.,  (1972).  Universals  and  cultural  differences in 
facial expressions of emotion. J. Cole (Ed.), Nebraska 
Symposium on Motivation,  19,  Lincoln  University  of 
Nebraska Press, 207–282. 
Ekman, P., (1977). Biological and cultural contributions to 
body  and  facial  movement.  J.  Blacking  (Ed.),  The 
anthropology of the body,  Academic  Press,  London, 
39–84. 
Ekman, P., (1984). Expression and the nature of emotion. 
Approaches to Emotion, 1–25. 
Ekman,  P.,  Friesen,  W.  V.,  (1971).  Constants  across 
cultures in the face and emotion. Journal of Personality 
and Social Psychology, 17 (2), 124–129. 
El Ayadi, M., Kamel, M. S., Karray, F.,( 2011). Survey on 
speech  emotion  recognition:  Features,  classification 
schemes, and databases. Patter Recognition, 44. 
Eyben,  F.,  Weninger,  F.,  Gross,  F.,  Schuller,  B.,  (2013). 
Recent developments in openSMILE, the Munich open-
source multimedia feature extractor. Proceedings of the 
21st ACM International Conference on Multimedia, 
Barcelona, Spain, 835–838. 
Fayyad,  U.  and  K.  Irani  (1993).  Multi-Interval 
Discretization  of  Continuous-Valued  Attributes  for 
Classification Learning. IJCAI . 
France,  D.,  Shiavi,  R.,  Silverman,  S.,  Silverman,  M., 
Wilkes, D., (2000). Acoustical properties of speech as 
indicators  of  depression  and  suicidal  risk.  IEEE 
Transactions on Biomedical Engineering, 47 (7). 
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, 
P.,  Witten,  I.  H.  (2009).  The  WEKA  data  mining 
software: An update. SIGKDD Explorations, 11 (1). 
Hermansky, H., & Morgan, N. (1994). RASTA processing 
of  speech.  Speech and Audio Processing, IEEE 
Transactions on, 2.  
Jiang,  D.  N.,  Cai,  L.  H.,  (2004).  Speech  emotion 
classification with the combination of statistic features 
and temporal features.  IEEE International Conference 
on Multimedia and Expo (ICME), 3, 1967–1970. 
Joshi, D., Zalte, B. M., (2013). Speech emotion recognition: 
A  review.  IOSR Journal of Electronics & 
Communication Engineering (JECE), 4 (4), 34–37.