turn  leads  to  a  modulation  of  the  light  intensity. 
Movements in the FOS can be recorded by using an 
interferometric  measuring  circuit.  One  of  the 
simplest devices of such a type can be considered a 
fiber-optic end interferometer (FOEI). During using 
quartz  single-mode  fiber  and  laser  with  emission 
wavelength of  1.55  µm in  FOEI,  range  of  detected 
linear motion of the mirror relative to the end face of 
the optical fiber is in the range from 0.000025 µm to 
640 µm, with an accuracy of ±0.000025 µm.  
Moreover, there are methods for registering both 
vibrations  and  displacement  of  surfaces  using  laser 
radiation that directly probes a biological object. For 
example, in work (Casaccia S. et al., 2015) describes 
the  technique  of  laser  Doppler  myography  (LDM), 
which  is  used  as  a  non-contact  method  for 
measuring the signal of mechanomyography (MMG) 
from the biceps of a shoulder. The LDM signal was 
measured by using a Polytec PDV100 laser Doppler 
vibrometer,  which  uses  a  laser  beam  with  a 
wavelength  of  633  nm,  which  corresponds  to  the 
second class of the laser equipment (harmless to the 
eye).  Polytec  PDV100  obtains  the  following 
technical  characteristics:  a  wide  range  of 
measurement  parameters  of  frequency  fluctuations 
from  infra-low  0.05  Hz  to  ultrasonic  22  kHz, 
measurement accuracy ±0.05 mm/s. 
The  methods  described  above  and  our  linear 
axisymmetric model will allow us to measure linear 
displacements in the necessary range of length units.  
CONFLICT OF INTEREST 
The  authors  declare  that  they  have  no  conflict  of 
interest. 
REFERENCES 
Abegao Pinto L., Willekens K., Van Keer K. et al., 2016. 
Ocular  blood  flow  in  glaucoma.  the  Leuven  Eye 
Study.  Acta  Ophthalmol.  94,  pp.592–598.  doi: 
10.1111/aos.12962.  
Casaccia  S.,  Scalise  L.,  2015.  Non-contact  assessment  of 
muscle  contraction:  Laser  Doppler  Myography.  IEEE 
International  Symposium  on  Medical  Measurements 
and  Applications  (MeMeA  2015)  Proceedings, 
pp.453–467. doi: 10.1109/MeMeA.2015.7145276. 
Geyer  O.,  Neudorfer  M.,  Snir  T.,  et  al.,  1999.  Pulsatile 
ocular  blood  flow  in  diabetic  retinopathy.  Acta. 
Ophthalmol.  Scand.  5,  pp.522–525,  doi:  10.1034/j.16 
00-0420.1999.770507.x. 
Kiseleva  A.A.,  Luzhnov  P.V.,  Shamaev  D.M.,  2020. 
Verification of Mathematical Model for Bioimpedance 
Diagnostics  of  the  Blood  Flow  in  Cerebral  Vessels. 
Advances in Intelligent Systems and Computing, 902, 
pp.251-259. doi: 10.1007/978-3-030-12082-5_23 
Langham  M.E.,  Farell  R.A.,  O’Brien  V.  et  al.,  1989. 
Blood flow in the human eye. Acta Opthalmol. pp.9–
13. doi: 10.1111/j.1755-3768.1989.tb07080.x. 
Luzhnov  P.  V.,  Kazakov  S.  B.,  Davydova  I.  D.,  2020. 
Stand Development for Modeling and Study of Ocular 
Blood  Filling  Oscillation.  2020  Ural  Symposium  on 
Biomedical  Engineering,  Radioelectronics  and 
Information  Technology  (USBEREIT),  pp.211–214. 
doi: 10.1109/USBEREIT48449.2020.9117773. 
Mori F., Konno S., Hikichi T., et al., 2001. Pulsatile ocular 
blood  flow  study:  decreases  in  exudative  age  related 
macular  degeneration.  Br  J  Ophthalmol.  5,  pp.531–
533. doi: 10.1136/bjo.85.5.531. 
Schmetterer  L.,  Kiel  J.  Ocular  Blood  Flow.  Springer, 
2012. 
Shamaev  D.M.,  Luzhnov  P.V.,  Iomdina  E.N.,  2017. 
Modeling  of  ocular  and  eyelid  pulse  blood  filling  in 
diagnosing  using  transpalpebral  rheoophthalmo-
graphy.  IFMBE  Proceedings  65,  pp.1000–1003.  doi: 
10.1007/978-981-10-5122-7_250 
Tultseva  S.  N.,  Titarenko  A.  I.,  Rukhovets  A.  G.,  2016. 
Characteristics  of  systemic  and  regional 
hemodynamics  in  ischemic  retinal  vein  occlusion  in 
young  and  middle-aged  adults.  Regionarnoe 
krovoobrashchenie i  mikrocirkulyaciya,  2(58), pp.24–
31. doi: 10.24884/1682-6655-2016-15-2-24-31. 
Tultseva  S.N.,  Titarenko  A.  I.,  Rukhovets  A.  G.,  2017. 
Eye hemodynamics in young and middle-aged patients 
with retinal vein occlusion. The Scientific Notes of the 
I.  P.  Pavlov  St.  Petersburg  State  Medical  University, 
24(4), pp.29–34. doi: 10.24884/1607-4181-2017-24-4-
29-34. 
Zhu  T.  et  al.,  2012.  In-line  fiber  optic  interferometric 
sensors in single-mode fibers. Sensors, 12, pp.10430–
10449. doi: 10.3390/s120810430.