trying to facilitate low-cost, robust assessment of PD 
using readily available means. In  this sense  we are 
working  on  extending  these  findings  on  the  PVI 
database. 
ACKNOWLEDGEMENTS 
This  work  is  being  funded  by  grants  TEC2016-
77791-C4-4-R  from  the  Government  of  Spain,  and 
CENIE_TECA-PARK_55_02  INTERREG  V-A 
Spain – Portugal (POCTEP). 
REFERENCES 
Alku, P., Murtola, T., Malinen, J., Kuortti, J.,  Story, B., 
Airaksinen,  M.,  Salmi,  M.,  Vilkman,  E.,  Geneid,  A., 
2019.  OPENGLOT-An  open  environment  for  the 
evaluation  of  glottal  inverse  filtering,  Speech 
Communication  107  38-47,  doi: 
10.1016/j.specom.2019.01.005 
Arora,  S.,  Baghai-Rivary,  L.,  and  Tsanas,  A.,  2019. 
Developing a large scale population screening tool for 
the assessment of Parkinson’s disease using telephone-
quality  voice.  Journal  of  the  Acoustical  Society  of 
America, Vol. 145, pp. 2871-2884. 
Brabenec,  L.,  Mekyska,  J.,  Galaz,  Z.,  and  Rektorova,  I., 
2017.  Speech  disorders  in  Parkinson's  disease:  early 
diagnostics  and  effects  of  medication  and  brain 
stimulation. J. Neural Transm., vol.  124:3, pp.   303–
334.  
Cover,  T.  M.  and  Thomas,  J.  A.,  2006.  Elements  of 
information theory, Wiley, New York. 
Dauer, W. and Przedborski S., 2003. Parkinson's disease: 
Mechanisms and models. Neuron, vol. 39, pp. 889–909 
Dimitriadis, D., Potamianos, A., and Maragos, P., 2009. A 
comparison of the Squared Energy and Teager-Kaiser 
Operators  for  Short-Term  Energy  Estimation  in 
Additive Noise. IEEE Trans. on Sig. Proc., vol. 57, No. 
7, pp. 2569-2581.  
De Lau, L. M. and Breteler, M. M., 2006. Epidemiology of 
Parkinson’s disease. The Lancet Neurology 5, pp. 525–
535. 
Duffy, J. R., 2013. Motor Speech Disorders, Elsevier, River 
Lane, St. Louis, Missouri, US. 
Gómez,  A.,  Palacios,  D.,  Ferrández,  J.  M.,  Mekyska,  J., 
Álvarez, A., and Gómez, P., 2019. A Methodology to 
Differentiate  Parkinson’s  Disease  and  Aging  Speech 
Based on Glottal Flow Acoustic Analysis. Int. Journal 
of Neural Systems, Vol. 30, 205558. 
Harrison,  E.  C.,  Horin,  A.  P., and  Earhart,  G. M.,  2019. 
Mental  Singing  Reduces  Gait  Variability  More  than 
Music Listening for Healthy Older Adults and People 
With Parkinson Disease. JNPT, Vol. 43, 2019, pp. 204-
211. 
Karlsson, F., Schalling, E., Laakso, K., Johansson, K. and 
Hartelius,  L.,  Assessment  of  speech  impairment  in 
patients  with  Parkinson’s  disease  from  acoustic 
quantifications  of  oral  diadochokinetic  sequences. 
Journal of the Acoustical Society of America, vol. 147, 
pp. 839-851. 
Palacios, D.,  Meléndez, G., López, A.,  Lázaro, C., Gómez, 
A.,  and    Gómez,  P.,  2020.  MonParLoc:  A  Speech-
Based  System  for  Parkinson’s  Disease  Analysis  and 
Monitoring. IEEE Access, vol. 8, pp. 188243-188255 
doi: 10.1109/ACCESS.2020.3031646. 
Parkinson,  J.,  1817.  An  Essay  on  the  Shaking  Palsy.  J. 
Neuropsychiatry Clin. Neurosci, Vol. 14:2 pp. 223-236. 
Ricciardi  et  al.,  2016  (Re-edited  in  Neuropsychiatry 
Classics  from  the  1817  monograph,  by  Sherwood, 
Neely and Jones). 
Ricciardi,  L.,  Ebreo,  M.,  Graziosi,  A.,  Barbuto,  M., 
Sorbera,  C.,  Morgante,  L.,  and  Morgante,  F.,  2016. 
Speech and gait in Parkinson’s disease: When rhythm 
matters. Park. Relat. Disord., vol. 32, pp. 42–47. 
Simard, R. and L’Ecuyer, P., 2011. Computing the Two-
Sided  Kolmogorov-Smirnov  Distribution.  Journal  of 
Statistical Software, Vol. 39:11, pp.  
Tsanas, A., 2012. Accurate telemonitoring of Parkinson’s 
disease symptom severity using nonlinear speech signal 
processing  and  statistical machine leaning. PhD. 
Thesis, U. of Oxford, U.K., June 2012. 
Ziegler,  W.,  2002.  Task-Related  Factors  in  Oral  Motor 
Control:  Speech  and  Oral  Diadochokinesis  in 
Dysarthria and Apraxia of Speech. Brain and Language, 
vol. 80, pp. 556-575.