We  assumed  that  the  temperature  remains 
constant.  Obviously,  various  parameters  may  have 
different  temperature  dependencies,  which  can 
further complicate the model. 
The  initial  validation  of  our  theoretical 
predictions  was  performed  on  Pseudomonas 
aeruginosa  elsewhere  (Caschera,  2021).  P. 
aeruginosa are a clinically relevant bacterial species 
and produce pyoverdine, a fluorescent siderophore. It 
can  be  of  particular  importance  for  remote 
quantification  of  bacterial  presence  using 
fluorescence bioimaging (Saiko, 2020). In Caschera 
et al. (Caschera, 2021), the model parameters (N
0
 and 
C
0
)  were  set experimentally. The  experimental data 
show  clear  sigmoid  dependence  of  bacterial 
fluorescence  on  bacterial  concentration.  It  persisted 
through  variations  in  temperature  and  inoculum 
starting  condition.  While  the  results  are  very 
preliminary,  they  indicate  that  P. aeruginosa 
fluorescence is primarily nutrient-driven.  
5  CONCLUSIONS 
We  have  built  two  simple  siderophore  production 
models  (quorum  sensing  and  resource  dependency) 
and linked them with Monod’s growth model.  As a 
result,  siderophore  accumulation  is  explicitly 
expressed  through  bacterial  concentration,  which 
allows direct experimental verification. 
The nutrient-dependent model predicts a sigmoid 
curve:  three  siderophore  accumulation  phases  with 
bacteria concentration growth: slow accumulation for 
[N
0
, N
th
], fast linear accumulation for [N
th
, K/2], and 
slow or no accumulation for [K/2, K).  
The quorum-sensing model predicts two regimes 
of  siderophore  accumulation:  relatively  slow 
accumulation for [N
0
, N
cr
] and much faster non-linear 
accumulation for [N
cr
, K). 
These  models’  interplay  introduces  more 
complex behavior (e.g., start and stop of siderophore 
production with bacterial population growth). 
Such  as  models  predict  entirely  different 
behavior,  experimental  data  may  help  differentiate 
between them. 
REFERENCES 
Gompertz,  B.,  1825,  On  the  nature  of  the  function 
expressive of the law of human mortality, and on a new 
mode  of  determining  the  value  of  life  contingencies. 
Philos. Trans. R. Soc. London 115:513-585. 
Verhulst, P.F., 1845, Recherches mathématiques sur la loi 
d'accroissement  de  la  population.Mém.  Acad. r. Sci. 
Lett. Belg. 18: 1–38. 
Monod, J., 1941, Recherches sur la croissance des cultures 
bactériennes  Thèse  de  docteur  ès  sciences  naturelles, 
Paris. 
Monod, J., 1949, The growth of bacterial cultures.A. Rev. 
Microbiol. 3: 371–394. 
Monod, J., 1950, La technique de culture continue: théorie 
et applications. Annls Inst. Pasteur 79: 390–410. 
Richards,  F.J.,  1959,  A  flexible  growth  function  for 
empirical use. J. Exp. Bot. 10:290-300. 
Zwietering,  M.H.,  Jongenburger,  I.,  Rombouts,  F.M., 
Van’tRiet, K., 1990, Modeling of the Bacterial Growth 
Curve. Appl. Environ. Microbiol. 56: 1875-1881  
Pla,  M-L.,  Oltra,  S.,  Esteban,  M-D.,  et  al.,  2015, 
Comparison  of  Primary  Models  to  Predict  Microbial 
Growth by  the Plate Count and Absorbance Methods, 
BioMed Research International,    2015:  365025,  
doi:10.1155/2015/365025. 
Lobry,  J.R.,  Flandrois,  J.P.,  Carret,  G.,  et  al.,  1992, 
Monod’s  bacterial  growth  model  revisited,  Bltn 
Mathcal Biol 54: 117, doi:10.1007/BF02458623 
Michaelis,  L.;  Menten,  M.L.,  1913,  Die  Kinetik  der 
Invertinwirkung. Biochem Z. 49: 333–369 
Ratledge,  C.  &  Dover,  L.  G.,  2000,  Iron  metabolism  in 
pathogenic bacteria. A. Rev. Microbiol. 54: 881–941. 
Eberl, H.J., Collinson, S.  2009, A modeling and simulation 
study  of  siderophore  mediated  antagonism  in  dual-
species  biofilms.  Theor Biol Med Model;  6:30, 
doi:10.1186/1742-4682-6-30 
Niehus, R., Picot, A., Oliveira, N.M., Mitri, S. and Foster, 
K.R., 2017, The evolution of siderophore production as 
a  competitive  trait.  Evolution,  71:  1443-1455, 
doi:10.1111/evo.13230 
West, S.A., Buckling, A., 2003, Cooperation, virulence and 
siderophore production in bacterial parasites, Proc. R. 
Soc. Lond. B 270: 37–44, doi: 10.1098/rspb.2002.2209 
Fgaier,  H,  Feher,  B,  McKellar,  R.C.,  Eberl,  H.J,  2008, 
Predictive  modeling  of  siderophore  production  by 
Pseudomonas  fluorescens  under  iron  limitation,  J of 
Theoretical Biology,  251(2),  348-362,  doi: 
10.1016/j.jtbi.2007.11.026. 
Griffin, A.S., West, S.A., Buckling, A., 2004, Cooperation 
and  competition  in  pathogenic  bacteria.  Nature 
430:1024–1027. 
Caschera,  A.,  Saiko,  G.,  On  Feasibility  of  Fluorescence-
Based Bacteria Presence Quantification: P.aeruginosa. 
Accepted to Bioimaging 2021. SCITEPRESS 
Bren, A.,  Hart, Y., Dekel, E., Koster, D., Alon, U., 2013, 
The  last  generation  of  bacterial  growth  in  limiting 
nutrient. BMC Systems Biology  7:27. 
Dockery, J.D., Keener, J.P., 2001, A Mathematical Model 
for Quorum Sensing in Pseudomonas aeruginosa, Bull 
of Math Bio, l63: 95-116. 
Saiko,  G.  and  Douplik,  A.,  2020,  Extraction  of  Intrinsic 
Fluorescence  in  Fluorescence  Imaging  of  Turbid 
Tissues. In the 13th International Joint Conference on 
Biomedical Engineering Systems and Technologies, 
SCITEPRESS, doi: 10.5220/0008919401230129