
infrastructure for biological and medical imaging" of 
the Ministry of Education, Youth and Sports of the 
CR (No. CZ.02.1.01/0.0/0.0/16_013/0001775). 
REFERENCES 
Alaskar, H. (2019). Deep Learning-based Model Architec-
ture  for  Time-Frequency  Images  Analysis.  January 
2018. 
Andén, J., & Mallat, S. (2014). Deep scattering spectrum. 
IEEE  Transactions  on  Signal  Processing,  62(16), 
4114–4128. 
Bruna,  J.,  &  Mallat,  S.  (2013).  Invariant  scattering 
convolution networks. IEEE Transactions  on Pattern 
Analysis and Machine Intelligence, 35(8), 1872–1886. 
Chen,  D.,  Wang,  Z.,  Guo,  D.,  Orekhov,  V.,  &  Qu,  X. 
(2020).  Review  and  Prospect:  Deep  Learning  in 
Nuclear Magnetic Resonance Spectroscopy. Chemistry 
- A European Journal, 26(46), 10391–10401. 
Graveron-Demilly, D. (2014). Quantification in magnetic 
resonance  spectroscopy  based  on  semi-parametric 
approaches.  In  Magnetic  Resonance  Materials  in 
Physics, Biology and Medicine (Vol. 27, Issue 2, pp. 
113–130). Springer Verlag. 
Hatami,  N.,  Lyon,  B.,  &  Etienne,  U.  (2018).  Magnetic 
Resonance  Spectroscopy  Quantification  using  Deep 
Learning. 
ISMRM.  (2016).  MRS  Fitting  Challenge  (ismrm.org 
/workshops/Spectroscopy16/mrs_fitting_challenge/).  
Kreis, R., & Kyathanahally, S. P. (2018). Deep Learning 
Approaches  for  Detection  and  Removal  of  Ghosting 
Artifacts in MR Spectroscopy. 863, 851–863. 
Lee, H. H., & Kim, H. (2019). Intact metabolite spectrum 
mining by deep learning in proton magnetic resonance 
spectroscopy  of  the  brain.  Magnetic  Resonance  in 
Medicine, 82(1), 33–48. 
Opstad, K. S., Bell, B. A., Griffiths, J. R., & Howe, F. A. 
(2008). Toward accurate quantification of metabolites, 
lipids,  and  macromolecules  in  HRMAS  spectra  of 
human brain tumor biopsies using LCModel. Magnetic 
Resonance in Medicine, 60(5). 
Osorio-Garcia,  M.  I.,  Sima,  D.  M.,  Nielsen,  F.  U., 
Dresselaers, T., Van Leuven, F., Himmelreich, U., & 
Van  Huffel,  S.  (2011).  Quantification  of  in  vivo  1H 
magnetic resonance spectroscopy signals with baseline 
and  lineshape  estimation.  Measurement  Science  and 
Technology, 22(11), 1–17. 
Poullet, J. B., Sima, D. M., Simonetti, A. W., De Neuter, 
B., Vanhamme, L., Lemmerling, P., & Van Huffel, S. 
(2007). An automated quantification of short echo time 
MRS spectra in an open source software environment: 
AQSES. NMR in Biomedicine, 20(5), 493–504. 
Poullet, J. B., Sima, D. M., & Van Huffel, S. (2008). MRS 
signal quantitation: A review of time- and frequency-
domain  methods.  Journal  of  Magnetic  Resonance, 
195(2), 134–144. 
Robin A. de Graaf. (2019). In Vivo NMR Spectroscopy. In 
In Vivo NMR Spectroscopy (pp. 1–42). 
Stagg,  C.,  &  Rothman,  D.  (2014).  Magnetic  Resonance 
Spectroscopy: Tools for Neuroscience Research. 
Starčuk, Z., & Starčuková, J. (2017). Quantum-mechanical 
simulations  for  in vivo  MR  spectroscopy:  Principles 
and  possibilities  demonstrated  with  the  program 
NMRScopeB. Analytical Biochemistry, 529. 
Stefan,  D.,  Cesare,  F.  Di,  Andrasescu,  A.,  Popa,  E., 
Lazariev,  A.,  Vescovo,  E.,  Strbak,  O.,  Williams,  S., 
Starcuk,  Z.,  Cabanas,  M.,  Van  Ormondt,  D.,  & 
Graveron-Demilly, D. (2009). Quantitation of magnetic 
resonance spectroscopy signals: The jMRUI software 
package. Measurement Science and Technology, 20(10). 
Suvichakorn, A., Ratiney, H., Bucur, A., Cavassila, S., & 
Antoine, J. P. (2008). Quantification method using the 
Morlet wavelet for Magnetic Resonance Spectroscopic 
signals  with  macromolecular  contamination. 
Proceedings of the 30th Annual International Conf. of 
the IEEE Engineering in Medicine and Biology Society, 
EMBS’08  -  “Personalized  Healthcare  through 
Technology,” 2681–2684. 
Van  Der  Graaf,  M.  (2010).  In  vivo  magnetic  resonance 
spectroscopy:  Basic  methodology  and  clinical 
applications.  European  Biophysics  Journal,  39(4), 
527–540. 
 
A Wavelet Scattering Convolutional Network for Magnetic Resonance Spectroscopy Signal Quantitation
275