SeVA platform implementation in a hospital setting. 
We  are  also  investigating  innovative  methods  to 
quantify  cognition  and  emotion  with  the  goal  to 
recommend  non-pharmacological  interventions  to 
reduce  stress  during  the  hospital  stay.  We  will 
evaluate the system with patient and nurse surveys as 
well  as  the  alarm  statistical  metrics  including  True 
Positive Rate, False Positive Rate, and False Negative 
Rate. 
ACKNOWLEDGEMENTS 
This work is partly supported by the Air Force Office 
of  Scientific  Research  (AFOSR)  Dynamic  Data-
Driven  Application  Systems  (DDDAS)  award 
number  FA9550-18-1-0427,  National  Science 
Foundation  (NSF)  research  projects  NSF-1624668 
and  NSF-1849113,  (NSF)  DUE-1303362 
(Scholarship-for-Service),  National  Institute  of 
Standards and Technology (NIST) 70NANB18H263, 
and Department of Energy/National Nuclear Security 
Administration  under  Award  Number(s)  DE-
NA0003946. 
REFERENCES 
AHRQ.(2020).  How  do  you  measure  fall  rates  and  fall 
prevention  practices?  Retrieved  from  https:// 
www.ahrq.gov/professionals/systems/hospital/fallpxto
olkit/fallpxtk5.html 
Babylonhealth.  (2020).  Babylon health UK - the online 
doctor and prescription services app.  Retrieved  from 
https://www.babylonhealth.com/ 
Chaccour, K., Darazi, R., El Hassani, A. H., & Andres, E. 
(2016). From fall detection to fall prevention: A generic 
classification  of  fall-related  systems.  IEEE Sensors 
Journal, 17 (3), 812–822. 
Chung, K., & Park, R. C. (2019). Chatbot-based healthcare 
service  with  a  knowledge  base  for  cloud  computing. 
Cluster Computing, 22 (1), 1925– 1937. 
Churpek, M. M., Yuen, T. C., Huber, M. T., Park, S. Y., 
Hall, J. B., & Edelson, D. P. (2012). Predicting cardiac 
arrest on the wards: a nested case-control study. Chest, 
141 (5), 1170–1176. 
Churpek, M. M., Yuen, T. C., Winslow, C., Robicsek, A. 
A., Meltzer, D. O., Gibbons,  R.  D.,  & Edelson, D. P. 
(2014).  Multicenter  development  and  validation  of  a 
risk  stratification  tool  for  ward  patients.  American 
Journal of Respiratory and Critical Care Medicine, 190 
(6), 649–655. 
Comendador, B. E. V., Francisco, B. M. B., Medenilla, J. 
S.,  &  Mae,  S.  (2015).  Pharmabot:  a  pediatric  generic 
medicine  consultant  chatbot.  Journal of Automation 
and Control Engineering Vol, 3 (2). 
Fadhil, A., & Gabrielli, S. (2017). Addressing challenges in 
promoting  healthy  lifestyles:  the  al-chatbot  approach. 
In  Proceedings of the 11th EAI International 
Conference on Pervasive Computing Technologies for 
Healthcare (pp. 261–265). 
Google.  (2020).  Dialogflow  |  Google  Cloud.  Author. 
Retrieved from https://cloud.google.com/dialogflow 
Gu, X.,  Li,  M., Cao,  Y.,  & Xiong,  L.  (2019).  Supporting 
both range queries and frequency estimation with local 
differential  privacy.  In  2019 IEEE Conference on 
Communications and Network Security (CNS)  (pp. 
124–132). 
Gu, X.,  Li,  M., Cheng,  Y.,  Xiong, L.,  &  Cao, Y.  (2020). 
PCKV:  Locally  differentially  private  correlated  key-
value  data  collection  with  optimized  utility. In 29th 
USENIX security symposium (USENIX security 20) (pp. 
967–984). 
Habib, M. A., Mohktar, M. S., Kamaruzzaman, S. B., Lim, 
K. S., Pin,  T. M., &  Ibrahim, F. (2014). Smartphone-
based  solutions  for  fall  detection  and  prevention: 
challenges  and  open  issues.  Sensors,  14  (4),  7181–
7208. 
Health,  B.  (2020).  Retrieved  from  https://www. 
buoyhealth.com/ 
IBM. (2020).  AI  healthcare  solutions.  Retrieved  from 
https://www.ibm.com/watson-health 
Inouye, S. K., Bogardus Jr, S. T., Charpentier, P. A., Leo-
Summers, L., Acam-pora, D., Holford, T. R., & Cooney 
Jr,  L.  M.   (1999).   A multicomponent intervention  to 
prevent  delirium  in  hospitalized  older  patients.  New 
England journal of medicine,340(9), 669–676. 
Inouye, S. K., Marcantonio, E. R., Kosar, C. M., Tommet, 
D., Schmitt, E. M., Travison, T. G., Jones, R. N. (2016). 
The  short-term  and  long-term  relationship  between 
delirium  and  cognitive  trajectory  in  older  surgical 
patients. 
Alzheimer’s & Dementia, 12 (7), 766–775. 
Julayanont,  P.,  &  Nasreddine,  Z.  S.  (2017).  Montreal 
cognitive  assessment  (moca):  concept  and  clinical 
review. In Cognitive Screening Instruments (pp. 139–
195). Springer. 
Marcantonio, E. R. (2017). Delirium in hospitalized older 
adults.  New England Journal of Medicine,  377(15), 
pp.1456-1466. 
Microsoft. (2020, Jul). Microsoft health bot project - ai at 
work  for  your  patients.  Retrieved  from  https://www. 
microsoft.com/en-us/research/project/health-bot/ 
Mitchell, M. D., Lavenberg, J. G., Trotta, R., & Umscheid,  
C.  A.  (2014).  Hourly  rounding  to  improve  nursing 
responsiveness:  a  systematic  review.  The Journal of 
nursing administration,44(9), 462. 
Pacheco, J., & Hariri, S. (2016). IoT security framework for 
smart  cyberinfrastructures.  In  2016 IEEE 1st 
International workshops on Foundations and 
Applications of self* systems (fas* w) (pp. 242–247). 
PACT.(2020).  Florence  your  health  assistant.  Retrieved 
from https://www.florence.chat/ 
Paoli,  C.  J.,  Reynolds,  M.  A.,  Sinha,  M.,  Gitlin,  M.,  &  
Crouser,  E.   (2018).Epidemiology and costs of sepsis 
in  the  united  states—an  analysis  based  on  timing  of