Feng, D., Chen, F., & Xu, W. (2013). Efficient leave-one-
out strategy for supervised feature selection. Tsinghua 
Science and Technology, 18(6), 629-635. 
Fonseca, M. I. P., Pereira, T., & Caseiro, P. (2015). Death 
and  disability  in  patients  with  sleep  apnea-a  meta-
analysis. Arquivos Brasileiros de Cardiologia, 104(1), 
58-66. 
Goldberger, A. L., Amaral, L. A., Glass, L., Hausdorff, J. 
M.,  Ivanov,  P.  C.,  Mark,  R.  G.,  ...  &  Stanley,  H.  E. 
(2000).  PhysioBank,  PhysioToolkit,  and  PhysioNet: 
components  of  a  new  research  resource  for  complex 
physiologic signals. circulation, 101(23), e215-e220. 
Goshvarpour, A., Abbasi, A., & Goshvarpour, A. (2013). 
Nonlinear evaluation of  electroencephalogram  signals 
in different sleep stages in apnea episodes. 
International journal of intelligent systems and 
applications, 5(10), 68. 
Hassan, A. R., & Bhuiyan, M. I. H. (2017). An automated 
method  for  sleep  staging  from  EEG  signals  using 
normal  inverse  Gaussian  parameters  and  adaptive 
boosting. Neurocomputing, 219, 76-87. 
Koley,  B.,  &  Dey,  D.  (2012).  An  ensemble  system  for 
automatic  sleep  stage  classification  using  single 
channel  EEG  signal.  Computers in biology and 
medicine, 42(12), 1186-1195. 
Kagawa, M., Tojima, H., & Matsui, T. (2016). Non-contact 
diagnostic system for sleep apnea–hypopnea syndrome 
based on amplitude and phase analysis of thoracic and 
abdominal  Doppler  radars.  Medical & biological 
engineering & computing, 54(5), 789-798. 
Kumari, C. U., Kora, P., Meenakshi, K., Swaraja, K., 
Padma, T., Panigrahy, A. K., & Vignesh, N. A. (2020). 
Feature Extraction and Detection of Obstructive Sleep 
Apnea  from  Raw  EEG  Signal.  In  International 
Conference on Innovative Computing and 
Communications (pp. 425-433). Springer, Singapore. 
Lee, P. L., Huang, Y. H., Lin, P. C., Chiao, Y. A., Hou, J. 
W., Liu, H. W., ... & Chiueh, T. D. (2019). Automatic 
Sleep Staging in Patients With Obstructive Sleep Apnea 
Using Single-Channel Frontal EEG. Journal of Clinical 
Sleep Medicine, 15(10), 1411-1420. 
Leppänen,  T.,  Kulkas,  A.,  Duce,  B.,  Mervaala,  E.,  & 
Töyräs,  J.  (2017).  Severity  of  individual  obstruction 
events  is  gender  dependent  in  sleep apnea.  Sleep and 
Breathing, 21(2), 397-404. 
Molina-Picó,  A.,  Cuesta-Frau,  D.,  Aboy,  M.,  Crespo,  C., 
Miro-Martinez,  P.,  &  Oltra-Crespo,  S.  (2011). 
Comparative study of approximate entropy and sample 
entropy  robustness  to  spikes.  Artificial intelligence in 
medicine, 53(2), 97-106. 
Penzel,  T.,  Schöbel,  C.,  &  Fietze,  I.  (2018).  New 
technology  to  assess  sleep  apnea:  wearables, 
smartphones, and accessories. F1000Research, 7. 
Richman,  J.  S.,  &  Moorman,  J.  R.  (2000).  Physiological 
time-series  analysis  using  approximate  entropy  and 
sample entropy. 
American Journal of Physiology-Heart 
and Circulatory Physiology, 278(6), H2039-H2049. 
Senaratna, C. V.,  Perret,  J.  L., Lodge, C. J., Lowe,  A.  J., 
Campbell, B. E., Matheson, M. C., ... & Dharmage, S. 
C. (2017). Prevalence of obstructive sleep apnea in the 
general population: a systematic review. Sleep medicine 
reviews, 34, 70-81. 
Supratak,  A.,  Dong,  H.,  Wu,  C.,  &  Guo,  Y.  (2017). 
DeepSleepNet:  A  model  for  automatic  sleep  stage 
scoring  based  on  raw  single-channel  EEG.  IEEE 
Transactions on Neural Systems and Rehabilitation 
Engineering, 25(11), 1998-2008. 
Tan, H. L., Gozal, D., Ramirez, H. M., Bandla, H. P., & 
Kheirandish-Gozal,  L.  (2014).  Overnight 
polysomnography versus respiratory polygraphy in the 
diagnosis  of  pediatric  obstructive  sleep  apnea.  Sleep, 
37(2), 255-260. 
Vimala,  V.,  Ramar,  K.,  &  Ettappan,  M.  (2019).  An 
intelligent sleep apnea  classification  system  based  on 
EEG signals. Journal of medical systems, 43(2), 36. 
Xie,  B.,  &  Minn,  H.  (2012).  Real-time  sleep  apnea 
detection by classifier combination. IEEE Transactions 
on information technology in biomedicine, 16(3), 469-
477. 
Zhang, J.,  Wu, Y.,  Bai, J.,  & Chen,  F. (2016). Automatic 
sleep stage classification based on sparse deep belief net 
and combination of multiple classifiers. Transactions of 
the Institute of Measurement and Control, 38(4), 435-
451. 
Zhou,  J.,  Wu,  X.  M.,  &  Zeng,  W.  J.  (2015).  Automatic 
detection  of  sleep  apnea  based  on  EEG  detrended 
fluctuation  analysis  and  support  vector  machine. 
Journal of clinical monitoring and computing,  29(6), 
767-772. 
BIODEVICES 2021 - 14th International Conference on Biomedical Electronics and Devices