Gomez, S., Belen, R. J., Kiehlbauch, M., & Aydil, E. S. 
(2004).  Etching  of  high  aspect  ratio  structures  in  Si 
using SF6/O2  plasma.  Journal of Vacuum Science & 
Technology A: Vacuum, Surfaces, and Films,  22(3), 
606. https://doi.org/10.1116/1.1710493 
Haddad,  S.  A.  P.,  Houben,  R.  P.  M.,  &  Serdijin,  W.  A. 
(2006).  The  evolution  of  pacemakers.  IEEE 
Engineering in Medicine and Biology Magazine, 25(3), 
38‑48. https://doi.org/10.1109/MEMB.2006.1636350 
Hourdakis,  E.,  &  Nassiopoulou,  A.  G.  (2020). 
Microcapacitors for Energy Storage: General 
Characteristics and Overview of Recent Progress. 
Physica  Status  Solidi  (a),  217(10),  1900950. 
https://doi.org/10.1002/pssa.201900950 
Jacqueline,  S.,  Domengès,  B.,  Voiron,  F.,  &  Murray,  H. 
(2013).  Conduction  mechanisms  in  2D  and  3D  SIS 
capacitors.  Semiconductor Science and Technology, 
28(4),  045018.  https://doi.org/10.1088/0268-
1242/28/4/045018 
Joung, Y.-H. (2013). Development of Implantable Medical 
Devices :  From  an  Engineering  Perspective. 
International Neurourology Journal,  17(3),  98‑106. 
https://doi.org/10.5213/inj.2013.17.3.98 
Kobayashi, K., Miyatake, H., Mitsuhashi, J., Hirayama, M., 
Higaki, T., & Abe, H. (1990). Dielectric breakdown and 
current  conduction  of  oxide/nitride/oxide  multi-layer 
structures.  Digest of Technical Papers.1990  
Symposium on VLSI Technology,  119‑120. 
https://doi.org/10.1109/VLSIT.1990.111037 
Kugler, A., Koyuncu, M., Zimmermann, A., & Kostelnik, 
J.  (2011).  Chip  Embedding  in  Laminates.  In  J. 
Burghartz  (Éd.),  Ultra-thin Chip Technology  
and Applications  (p.  159‑165).  Springer. 
https://doi.org/10.1007/978-1-4419-7276-7_14 
Lee, J. Z., Mulpuru, S. K., & Shen, W. K. (2018). Leadless 
pacemaker : Performance and complications. Trends in 
Cardiovascular Medicine,  28(2),  130‑141. 
https://doi.org/10.1016/j.tcm.2017.08.001 
Mody,  J.,  &  Nxumalo,  J.  (2019).  Scanning  Capacitance 
Microscopy for Two-Dimensional Carrier Profiling of 
Semiconductor Devices. In U. Celano (Éd.), Electrical 
Atomic Force Microscopy for Nanoelectronics  (p. 
107‑142).  Springer  International  Publishing. 
https://doi.org/10.1007/978-3-030-15612-1_4 
Mond,  H.  G.,  &  Proclemer,  A.  (2011).  The  11th  world 
survey of cardiac pacing and implantable cardioverter-
defibrillators : Calendar year 2009--a World Society of 
Arrhythmia’s  project.  Pacing and Clinical 
Electrophysiology: PACE,  34(8),  1013‑1027. 
https://doi.org/10.1111/j.1540-8159.2011.03150.x 
Murray, F., LeCornec, F., Bardy, S., Bunel, C., Verhoeven, 
J. F. c, Heuvel, F. C. M. van den, Klootwijk, J. H., & 
Roozeboom,  F.  (2007).  Silicon  Based  System-in-
Package :  A  new  technology  platform  supported  by 
very  high  quality  passives  and  system  level  design 
tools.  2007 Topical Meeting on Silicon Monolithic 
Integrated Circuits in RF Systems,  149‑153. 
https://doi.org/10.1109/SMIC.2007.322803 
Palumbo, F., Wen, C., Lombardo, S., Pazos, S., Aguirre, F., 
Eizenberg, M., Hui, F., & Lanza, M. (2020). A Review 
on Dielectric Breakdown in Thin Dielectrics : Silicon 
Dioxide,  High-k,  and  Layered  Dielectrics.  Advanced 
Functional Materials,  30(18),  1900657. 
https://doi.org/10.1002/adfm.201900657 
Porter, M.,  Gerrish,  P., Tyler,  L., Murray, S.,  Mauriello,  R., 
Soto, F., Phetteplace, G., & Hareland, S. (2008). Reliability 
considerations  for  implantable  medical  ICs.  2008 IEEE 
International Reliability Physics Symposium,  516‑523. 
https://doi.org/10.1109/RELPHY.2008.4558939 
Roozeboom, F., Kemmeren, A. L. A. M., Verhoeven, J. F. 
C., van den Heuvel, F. C., Klootwijk, J., Kretschman, 
H., Frič, T., van Grunsven, E. C. E., Bardy, S., Bunel, 
C., Chevrie, D., LeCornec, F., Ledain, S., Murray, F., 
&  Philippe,  P.  (2006).  Passive  and  heterogeneous 
integration  towards  a  Si-based  System-in-Package 
concept.  Thin Solid Films,  504(1),  391‑396. 
https://doi.org/10.1016/j.tsf.2005.09.103 
Spitzer, A., & Baunach, R. (1989). The physics of ONO layer 
dielectrics.  Applied Surface Science,  39(1),  192‑199. 
https://doi.org/10.1016/0169-4332(89)90433-9 
Vandervorst,  W.,  Fleischmann,  C.,  Bogdanowicz,  J., 
Franquet, A., Celano, U., Paredis, K., & Budrevich, A. 
(2017).  Dopant,  composition  and  carrier  
profiling  for  3D  structures.  Materials Science in 
Semiconductor Processing,  62,  31‑48. 
https://doi.org/10.1016/j.mssp.2016.10.029 
Zhong, J., & Yan, J. (2015). Seeing is believing : Atomic 
force  microscopy  imaging  for  nanomaterial  
research.  RSC Advances,  6(2),  1103‑1121. 
https://doi.org/10.1039/C5RA22186B. 
APPENDIX 
In  this  section,  SCM  measurements  and  the 
optimization of the parameters are described. In the 
SCM mode, the local contact of the tip apex with the 
sample  forms  a  nano-MOS  contact.  During 
measurements, two voltages V
DC
 and V
AC
 are applied 
(Figure 10).  
 
Figure 10: Scanning Capacitance measurement. 
This  mode  allows  to  characterize  majority  carrier 
concentrations and carrier types in semiconductors. In 
fact,  the  electrically  conductive  tip  is  scanned  in 
V
AC
90 kHz 
V
DC
M
O
S 
Y
X
V
AC
90 kHz 
V
DC
M
O
S