subspace  alignment.  Proceedings of the IEEE 
International Conference on Computer Vision, 2960–
2967. https://doi.org/10.1109/ICCV.2013.368 
Hart,  S.  G.,  &  Staveland,  L.  E.  (1988).  Development  of 
NASA-TLX (Task Load  Index):  Results of Empirical 
and  Theoretical  Research.  Advances in Psychology, 
52(C),  139–183.  https://doi.org/10.101  6/S0166-
4115(08)62386-9 
Hogervorst,  M. A.,  Brouwer,  A.  M.,  &  van  Erp,  J.  B.  F. 
(2014).  Combining  and  comparing  EEG,  peripheral 
physiology and eye-related measures for the assessment 
of  mental  workload.  Frontiers in Neuroscience, 
8(OCT). https://doi.org/10.3389/fnin s.2014.00322 
Hwang,  T.,  Kim,  M.,  Hwangbo,  M.,  &  Oh,  E.  (2014). 
Comparative analysis  of cognitive  tasks  for  modeling 
mental  workload  with  electro  encephalogram.  Conf. 
Proceedings : Annual International Conference of the 
IEEE Engineering in Medicine and Biology Society. 
IEEE Engineering in Medicine and Biology Society. 
Annual Conference,  2014,  2661–2665. 
https://doi.org/10.1109/EMB C.2014.6944170 
Mehta, R. K., & Agnew, M. J. (2012). Influence of mental 
workload on muscle endurance, fatigue, and recovery 
during  intermittent  static  work.  European Journal of 
Applied Physiology,  112(8),  2891–2902.  https://doi. 
org/10.1007/s00421-011-2264-x 
Mueller, K. R., Tangermann, M., Dornhege, G., Krauledat, 
M.,  Curio,  G.,  &  Blankertz,  B.  (2008).  Machine 
learning for  real-time single-trial EEG-analysis: From 
brain-computer interfacing to mental state monitoring. 
Journal of Neuroscience Methods,  167(1),  82–90. 
https://doi.org/10.1016/j.jneu meth.2007.09.022 
Taylor,  G.,  Reinerman-Jones,  L.,  Cosenzo,  K.,  & 
Nicholson,  D.  (2010).  Comparison  of  Multiple 
Physiological  Sensors  to  Classify  Operator  State  in 
Adaptive  Automation  Systems.  Proceedings of the 
Human Factors and Ergonomics Society Annual 
Meeting,  54(3),  195–199.  https://doi.org/10.1177 
/154193121005400302 
Theorell, T., Perski, A., Akerstedt, T., Sigala, F., Ahlberg-
Hultén, G., Svensson, J., & Eneroth, P. (1988). Changes 
in job strain in relation to changes in physiological state. 
A  longitudinal  study.  Scandinavian Journal of Work, 
Environment & Health,  14(3),  189–196. 
https://doi.org/10.5 271/sjweh.1932 
Venthur,  B.,  Blankertz,  B.,  Gugler,  M.  F.,  &  Curio,  G. 
(2010).  Novel  applications  of  BCI  technology: 
Psychophysiological  optimization  of  working 
conditions in industry. Conference Proceedings - IEEE 
International Conference on Systems, Man and 
Cybernetics,  417–421.  https://doi.org/10.1109/ 
ICSMC.2010.5641772 
Wang, S., Gwizdka, J., & Chaovalitwongse, W. A. (2016). 
Using  Wireless  EEG  Signals  to  Assess  Memory 
Workload  in  the n-Back  Task.  IEEE Transactions on 
Human-Machine Systems,  46(3),  424–435. 
https://doi.org/10.1109/THMS.2015.2476818 
Wang, Z., Hope, R. M., Wang, Z., Ji, Q., & Gray, W. D. 
(2012).  Cross-subject  workload  classification  with  a 
hierarchical  Bayes  model.  NeuroImage,  59(1),64–69 
https://doi.org/10.1016/j.neuroimage.2011.07.094 
Welke, S., Juergensohn, T., & Roetting, M. (2009). Single-
trial  detection  of  cognitive  processes  for  increasing 
traffic  safety.  Proceedings of the 21st International 
Technical Conference on the Enhanced Safety of 
Vehicles Conference (ESV)., 1–10. 
Wolpaw,  J.  R.,  Birbaumer,  N.,  McFarland,  D.  J., 
Pfurtscheller,  G.,  &  Vaughan,  T.  M.  (2002).  Brain-
computer  interfaces  for  communication  and  control. 
Clinical Neurophysiology : Official Journal of the 
International Federation of Clinical Neurophysiology, 
113(6),  767–791.  https://doi.org/  10.1016/S1388-
2457(02)00057-3 
Zander, T., Kothe,  C., Jatzev, S.,  &  Gaertner, M. (2010). 
Enhancing  Human-Computer  Interaction  with  Input 
from  Active  and  Passive  Brain-Computer  Interfaces. 
Brain-Computer Interfaces,  149–178.  https://doi.org 
/10.1007/978-1-84996-272-8 
Zarjam,  P.,  Epps,  J.,  Lovell,  N.  H.,  &  Chen,  F.  (2012). 
Characterization of memory load in an arithmetic task 
using non-linear analysis of EEG signals. Engineering 
in Medicine and Biology Society (EMBC), 2012 Annual 
International Conference of the IEEE,  3519–3522. 
https://doi.org/10.1109/ EMBC.2012.6346725 
Zhang, J., Wang, Y., & Li, S. (2017). Cross-subject mental 
workload classification using kernel spectral regression 
and  transfer  learning  techniques.  Cognition, 
Technology and Work. https://doi.org/ 10.1007/s10111-
017-0425-3 
Zhang,  P.,  Wang,  X.,  Zhang,  W.,  &  Chen,  J.  (2019). 
Learning  Spatial-Spectral-Temporal  EEG  Features 
With Recurrent 3D Convolutional Neural Networks for 
Cross-Task  Mental  Workload  Assessment.  IEEE 
Transactions on Neural Systems and Rehabilitation 
Engineering.  https://doi.org/10.1109/TNSRE.2018 
.2884641 
Zijlstra,  F.  R.  (1993).  Efficiency  in  work  behaviour:  A 
design  approach  for  modern  tools.  Delft University 
Press,  January 1993,  1–186.  https://doi.org/90-6275-
918-1