Kauppi,  T.,  Kalesnykiene,  V.,  Kamarainen,  J.-K.,  Lensu, 
L.,  Sorri,  I.,  Raninen, A., Voutilainen, R., Pietila ̈,  J., 
Ka ̈lvia ̈inen,  H.,  Uusitalo,  H.,  2007.  The  DI- 
ARETDB1  diabetic  retinopathy  database  and 
evaluation protocol. In: Proc BMVC. Warwik, UK. 
Lin, T. Y., Dollár, P., Girshick, R., He, K., Hariharan, B., 
&  Belongie,  S.  (2017).  Feature  pyramid  networks  for 
object  detection.  In  Proceedings  of  the  IEEE 
Conference  on  Computer  Vision  and  Pattern 
Recognition (pp. 2117-2125). 
Liu Q., Zou B., Chen J., Ke W., Yue K.,  Chen Z., and Zhao 
G., “A location-to-segmentation strategy for automatic 
exudate segmentation in colour retinal fundus images,” 
Computerized Medical Imaging and Graphics, vol. 55, 
pp. 78–86, 2017. 
Long,  J.,  Shelhamer,  E.,  &  Darrell,  T.  (2015).  Fully 
convolutional networks for semantic segmentation. In 
Proceedings of the IEEE conference on computer vision 
and pattern recognition (pp. 3431-3440). 
Mane V., Kawadiwale R., and Jadhav D., “Detection of red 
lesions in diabetic retinopathy affected fundus images,” 
in  IEEE  Inter-  national  Advance  Computing 
Conference (IACC), 2015, pp. 56–60. 
Orlando, J. I., Prokofyeva, E., del Fresno, M., & Blaschko, 
M.  B.  (2018).  An  ensemble  deep  learning  based 
approach  for  red  lesion  detection  in  fundus  images. 
Computer methods and programs in biomedicine, 153, 
115-127. 
Porwal,  Prasanna,  S.  P.  R.  K.  M.  K.  G.  D.  V.  S.  and 
Meriaudeau,  F.,  “Indian  diabetic  retinopathy  image 
dataset (idrid).,” IEEE Dataport. (2019). 
Prentašić, P., & Lončarić, S. (2015). Detection of exudates 
in  fundus  photographs  using  convolutional  neural 
networks.  In  2015  9th  International  Symposium  on 
Image and Signal Processing and Analysis (ISPA) (pp. 
188-192). 
Quellec, G., Charrière, K., Boudi, Y., Cochener, B., & 
Lamard,  M.  (2017).  Deep  image  mining  for  diabetic 
retinopathy screening. Medical image analysis, 39, 178-
193. 
Qureshi,  I.,  Ma,  J.,  &  Abbas,  Q.  (2019).  Recent 
development on detection methods for the diagnosis of 
diabetic retinopathy. Symmetry, 11(6), 749. 
Raman, R., Srinivasan, S., Virmani, S., Sivaprasad, S., Rao, 
C.,  &  Rajalakshmi,  R.  (2019).  Fundus  photograph-
based  deep  learning  algorithms  in  detecting  diabetic 
retinopathy. Eye, 33(1), 97-109. 
Ronneberger,  O.,  Fischer,  P.,  &  Brox,  T.  (2015).  U-net: 
Convolutional  networks  for  biomedical  image 
segmentation. In International Conference on Medical 
image  computing  and  computer-assisted  intervention 
(pp. 234-241). Springer, Cham. 
Salehi, S., Erdogmus D., and Gholipour A., “Tversky loss 
function  for  image  segmen-  tation  using  3d  fully 
convolutional  deep  networks,”  in  International 
Workshop on Machine Learning in Medical Imaging, 
379–387, Springer (2017).  
Sánchez, C., Niemeijer, M., Išgum, I., Dumitrescu, A., 
Suttorp-Schulten, M., Abràmoff, M., van Ginneken, B., 
2012. Contextual computer-aided detection: Improving 
bright lesion detection  in  retinal images and coronary 
calcification  identification  in  ct  scans.  Med.  Image 
Anal. 16 (1), 50–62. 
Shan,  J.,  &  Li,  L.  (2016).  A  deep  learning  method  for 
microaneurysm  detection  in  fundus  images.  In  2016 
IEEE  First  International  Conference  on  Connected 
Health:  Applications,  Systems  and  Engineering 
Technologies (CHASE) (pp. 357-358). 
Simonyan,  Karen,  and  Andrew  Zisserman.  "Very  deep 
convolutional  networks  for  large-scale  image 
recognition." arXiv preprint arXiv:1409.1556 (2014). 
Tiu  E.,  “Metrics  to  evaluate  your  semantic  segmentation 
model.  (2019).  [URL  Accessed  8/2019].  URL: 
https://towardsdatascience.com  /metrics-to-evaluate-
your-semantic-segmentation-model-6bcb99639aa2.  
Van  Grinsven,  M.  J.,  van  Ginneken,  B.,  Hoyng,  C.  B., 
Theelen, T., & Sánchez, C. I. (2016). Fast convolutional 
neural network training using selective data sampling: 
Application  to  hemorrhage  detection  in  color  fundus 
images. IEEE transactions on medical imaging, 35(5), 
1273-1284. 
Wilkinson  C.,  Ferris  F.,  Klein  R.,et  al.  (2003).  Proposed 
international clinical diabetic retinopathy  and  diabetic  
macular    edema    disease    severity    scales,  in 
Ophthalmology110(9),1677–1682 (2003). 
Yu, H., Yang, Z., Tan, L., Wang, Y., Sun, W., Sun, M., & 
Tang,  Y.  (2018).  Methods  and  datasets  on  semantic 
segmentation:  A  review.  Neurocomputing,  304,  82-
103. 
Zhang,  X.,  Thibault,  G.,  Decencière,  E.,  Marcotegui,  B., 
Laÿ,  B.,  Danno,  R.  &  Chabouis,  A.  et  al.  (2014). 
Exudate  detection  in  color  retinal  images  for  mass 
screening  of  diabetic  retinopathy.  Medical  image 
analysis, 18(7), 1026-1043. 
Zhou L., Li P., Yu Q., Qiao Y., and Yang J., “Automatic 
hemorrhage detection in color fundus images based on 
gradual  removal  of  vascu-  lar  branches,”  in  IEEE 
International Conference on Image Processing (ICIP), 
2016, pp. 399–403.