Edition. MIT Press. 
Baeza Y.,  1999.  Modern Information Retrieval. Addison-
Wesley Longman Publishing Co., ISBN 0-201-39829-
X. 
Ben-Hur, A., Horn, D., Siegelmann,  H.T.,  Vapnik,  V.N., 
2001.  Support vector clustering.  Journal  of  Machine 
Learning Research. 2, 125–137. 
Bishop,  C.  M.,  2006.  Pattern Recognition and Machine 
Learning, Springer. 
Breiman  L.,  2001.  Random Forests.  Machine  Learning. 
45(1), 5–32. doi:10.1023/A:1010933404324. 
Chen  Y.C.,  Suzuki  T.,  Suzuki  M.,  Takao  H.,  Murayama 
Y.,  Ohwada  H.,  2017.  Building a classifier of onset 
stroke prediction using random tree algorithm. 
International  Journal  of  Machine  Learning  and 
Computing, 7(4), 61-66. 
Cortes, C.,  Vapnik, V.N., 1995.  Support-vector networks. 
Machine  Learning.  20(3),  273–297. 
CiteSeerX10.1.1.15.9362. doi:10.1007/BF00994018. 
Donnan, G.A., Fisher M., Macleod M., Davis S.M., 2008. 
Stroke. The Lancet. 371(9624), 1612–23. 
Fritzke B., 1994. A Growing Neural Gas Network Learns 
Topologies.  Part  of:  Advances  in  Neural  Information 
Processing Systems 7, NIPS. 
Girvan  M.,  Newman  M.E.J.,  2002.  Community structure 
in social and biological networks,  Proc.  Natl.  Acad. 
Sci. USA 99, 7821–7826. 
Holte,R.C., 1993. Very simple classification rules perform 
well on most commonly used datasets.  Machine 
Learning. 
Italian  Ministry  of  Health  website,  2020.  http://www. 
salute.gov.it/portale/salute/p1_5.jsp?  lingua=italiano& 
id=28&area=Malattie_cardiovascolari,  last  accessed 
2020/04/24. 
John,  G.H.;  Langley,  P.,  1995.  Estimating Continuous 
Distributions in Bayesian Classifiers.  Proc.  Eleventh 
Conf. on Uncertainty in Artificial Intelligence. Morgan 
Kaufmann. 338–345. arXiv:1302.4964 
Kohonen  T.,  1988.  An introduction to neural computing. 
Neural Networks, 1, 3-16. 
Kohonen  T.,  1989.  Self-Organization and Associative 
Memory, Berlin: Springer-Verlag. 
Kohonen T., 1990. The Self Organizing Map.  Proc of  the 
IEEE, 78(9). 
Lella L., Licata I., 2017. Prediction of Length of Hospital 
Stay using a Growing Neural Gas Model.  In 
Proceedings of the 8th International Multi-Conference 
on  Complexity,  Informatics  and  Cybernetics  (IMCIC 
2017), 175-178. 
Lyden P., Raman R., Liu L., Emr M., Warren M., Marler 
J.,  2009.  National Institutes of Health Stroke scale 
certification is reliable across multiple venues. Stroke, 
40(7),  2507-2511.  doi:10.1161/STROKEAHA.116. 
015434. 
Martinetz,  T.  M.,  Schulten,  K  J.,  1991.  A "neural-gas" 
network learns topologies. In Kohonen, T., Makisara, 
K, Simula, 0., and Kangas, J., editors, Artificial Neural 
Networks, North-Holland, Amsterdam, 397-402. 
Martinetz,  T.  M.,  Schulten,  K  J.,  1994.  Topology 
representing networks.  Neural  Networks,  7(3),  507-
522. 
Mess  M.,  Klein  J.,  Yperzeele  L.,  Vanacker  P.,  Cras  P., 
2016. Predicting discharge destination after stroke: A 
systematic review.  Clin  Neurol  Neurosurg.  142(15-
21). doi:10.1016/j.clineuro.2016.01.004. 
Pereira  S.,  Foley  N.,  Salter  K.,  McClure  J.A., Meyer  M., 
Brown J.,  Speechley M.,  Teasell  R., 2014. Discharge 
destination of individuals with severe stroke 
undergoing rehabilitation: a predictive model. Disabil 
Rehabil.  36(9),  727-731.  doi:10.3109/09638288. 
2014.902510. 
Platt,J.,  1998.  Sequential Minimal Optimization: A Fast 
Algorithm for Training Support Vector Machines. 
Technical Report MSR-TR-98-14. 
Putra  Pratama  A.,  Tresno  T.,  Wahyu  Purwanza  S.,  2019. 
Development the national institutes of health stroke 
scale (NIHSS) for predicting disability and functional 
outcome to support discharge planning after ischemic 
stroke. Journal Ners, 14(3). 
Saver J.L., Filip B., Hamilton S., Yanes A., Craig S., Cho 
M.,  Conwit  R.,  Starkman  S.,  FAST-MAG 
Investigators  and  Coordinators,  2010.  Improving the 
reliability of stroke disability grading in clinical trials 
and clinical practice: the Rankin Focused Assessment 
(RFA).  Stroke.  41  (5):  992–
doi:10.1161/STROKEAHA.109.571364.  PMC 
2930146. PMID 20360551 
Safe  Implementation  of  Treatments  in  Stroke  website, 
2020.  https://sitsinternational.org,  last  accessed 
2020/04/24. 
Tin  Kam  Ho,  1998.  The Random Subspace Method for 
Constructing Decision Forests.  In  IEEE  Transactions 
on  Pattern  Analysis  and  Machine  Intelligence,  20(8), 
832–844, DOI:10.1109/34.709601. 
Tin  Kam  Ho,  1995.  Random Decision Forests. 
Proceedings  of  the  3rd  International  Conference  on 
Document  Analysis  and  Recognition,  Montreal,  QC, 
278–282. 
Van Hulle M. M., 1989. Self Organizing Maps. Handbook 
of Natural Computing, 585-622. 
Wilson J. L., Hareendran A., Grant M., Baird T., Schulz 
U.G.,  Muir  K.W.,  Bone  I.,  2002.  Improving the 
Assessment of Outcomes in Stroke: Use of a 
Structured Interview to Assign Grades on the Modified 
Rankin Scale.  Stroke.  33  (9):  2243–2246. 
doi:10.1161/01.STR.0000027437.22450.BD.  PMID 
12215594 
Witten,I.  H.,  Frank,E.,  Hall,M.A.,  2011.  Data Mining 
Practical Machine Learning Tools and Techniques. 
Morgan Kaufmann Publishers. 
Zdrodowska  M.,  2019.  Attribute selection for stroke 
prediction. Sciendo. Doi 10.2478/ama-2019-0026. 
Zdrodowska M., Dardzinska M, Chorazy M., Kulakowska 
A.,  2018.  Data Mining Techniques as a tool in 
neurological disorders diagnosis. Acta Mechanica et 
Automatica, 12(3), 217-220.