gait parameters seem to be additionally useful for an 
objective classification of transfemoral amputees. 
The potential of the gait parameters contributing 
to objective assessment has to be confirmed with fur-
ther investigations.  Based  on a  larger  sample  size a 
statistical analysis have  to be performed in order to 
make generalized statements and to develop an algo-
rithm  to  establish a  decision support  system  for  the 
classification of patients with a transfemoral amputa-
tion in one of the three considered mobility grades. 
Furthermore, it could be recommendable for fur-
ther studies to use the AMP tool additionally to the 
determined mobility grade based on the profile survey 
in order to have supplementary information.  
ACKNOWLEDGEMENT 
The authors are grateful for all subjects volunteering 
to participate in this study. We also thank the German 
Central Innovation Program SME (Zentrales Innova-
tionsprogramm Mittelstand - ZIM) for supporting the 
project ‘‘Multifunctional diagnostic machine for pa-
tients  of  lower  limb  amputations”  (ZF4096303TS6: 
Multifunktionales  Diagnostikgerät  für  Amputa-
tionspatentien) in which the diagnostic machine was 
developed  in  cooperation  with  Guenther  Bionics 
GmbH and Peuker GmbH.  
The  authors  wants  to  thank  Hagen  Theuer  who 
wrote his Bachelor Thesis in the course of the ZIM 
project. 
REFERENCES 
Agrawal V, Gailey RS, O’Toole C, Gaunaurd I, Finnieston 
A (2013). Influence of gait training and pros-thetic foot 
category on external work symmetry during unilateral 
transtibial amputee gait. Prosthetics and Orthotics In-
ternational,  37(5),  396–403.  DOI:  https://jour-
nals.sagepub.com/doi/10.1177/0309364612473501   
Agrawal  V,  Gailey  RS,  Gaunaurd  IA,  O’Toole  C,  Fin-
nieston AA (2013). Comparison between micro-proces-
sorcontrolled  ankle/foot  and  conventional  prosthetic 
feet  during  stair  negotiation  in  people  with  unilateral 
transtibial amputation. J Rehabil Res Dev. 2013; 50(7): 
941–50. http://dx.doi.org/10.1682/JRRD.2012.05.0093 
Balk EM, Gazula A, Markozannes G, et al. (2018). Lower 
Limb Prostheses: Measurement Instruments, Compari-
son  of  Component  Effects  by  Subgroups,  and  Long-
Term  Outcomes  [Internet].  Rockville  (MD):  Agency 
for Healthcare Research  and Quality (US); 2018 Sep. 
(Comparative Effectiveness Review, No. 213.) Table 1, 
Lower limb extremity prosthesis Medicare Functional 
Classification  Levels  (K  levels)  Available  from: 
https://www.ncbi.nlm.nih.gov/ 
books/NBK531517/table/ch2.tab1/,  (Online:  6.11. 
2019) 
Batten,  H.  R.,  McPhail,  S.  M.,  Mandrusiak,  A.  M.,  Var-
ghese,  P.  N.,  &  Kuys,  S.  S.  (2019).  Gait  speed as  an 
indicator  of  prosthetic  walking  potential  following 
lower limb amputation. Prosthetics and Orthotics Inter-
national,  43(2),  196–203.  DOI:  https://doi.org/ 
10.1177/0309364618792723  
Darter BJ, Wilken JM (2011). Gait training with virtual re-
ality-based real-time feedback: improving gait  perfor-
mance following transfemoral amputation. Phys Ther. 
2011;  91(9):  1385–94.  DOI:  https://doi.org/ 
10.2522/ptj.20100360 PMID: 21757579 
Dudek NL, Khan OD, Lemaire ED, Marks MB, Saville L 
(2008).  Ambulation monitoring of  transtibial  amputa-
tion  subjects  with  patient  activity  monitor  versus  pe-
dometer. Journal of Rehabilitation Research & Devel-
opment 2008; 45 (4): 577–586. 
Gailey R, Roach K, Applegate B, Nash M (2002). The Am-
putee Mobility Predictor (AMP): an instrument to as-
sess determinants of the lower limb amputee’s ability to 
ambulate. Arch Phys Med Rehab 2002; 83: 613–627. 
MDS  Essen  (ed.)  (2008).  Profilerhebungsbogen  für  die 
Versorgung  mit  Beinprothesen.  URL:  https://www. 
gkv-spitzen-ver-band.de/media/dokumente/krankenver 
sicherung_1/hilfsmittel/fortschreibungen_aktuell/aelter
e/HiMi_Fortschr_Profilerhebungsbogen_Produktgrup
pe_24_2008.pdf, (Online: 18.11.2019). 
Gailey  RS  (2006).  Predictive  Outcome  Measures  Versus 
Functional Outcome Measures in the Lower Limb Am-
putee.  American  Academy  of  Orthotists  and  Prosthe-
tists. 2006; (6): 51-60. 
Orlowski K, Loose H, Eckardt F, Edelmann-Nusser J, Witte 
K (2015). Analyzing the Transfemoral Am-putee Gait 
Using Inertial Sensors - Identifying Gait Parameters for 
Investigating the Symmetry of Gait - A Pilot Study. In-
ternational  Conference  on  Bio-inspired  Systems  and 
Signal  Processing  (BIOSIGNALS),  Lisbon,  Portugal, 
12.-15. January 2015. 
Orlowski K, Loose H, Eckardt F, Edelmann-Nusser J, Witte 
K (2016). Evaluation of gait parameters determined by 
InvestiGAIT against a reference  system.  International 
Conference  on  Bio-inspired  Systems  and  Signal  Pro-
cessing (BIOSIGNALS), Rome, Italy, February 2016. 
Orlowski  K,  Eckardt  F,  Herold  F,  Aye  N,  Edelmann-
Nusser, J, Witte K (2017). Examination of the reli-abil-
ity of an inertial sensor-based gait analysis system. Bi-
omed.  Eng.-Biomed.  Tech.  2017;  DOI  10.1515/bmt-
2016-0067. 
Oude  Lansink  ILB,  van  Kouwenhove  L,  Dijkstra  PU, 
Postema K, Hijmans JM (2017). Effects of inter-ven-
tions on normalizing step width during self-paced dual-
belt treadmill walking with virtual reality, a randomized 
controlled trial. Gait & posture. 2017; 58: 121–5. 
Stephen  P,  Aitken  R  (1987).  Morbidity  survey  of  lower 
limb amputees. Clin Rehabil 1987;1:181–186. 
Theeven PJR, Hemmen B, Brink PRG, Smeets RJEM, 
Seelen HEM (2013). Measures and procedures utilized