Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., 
WardeFarley, D., Ozair, S., Courville A., and Bengio. 
Y., 2014. Generative adversarial nets. In Advances in 
Neural Information Processing Systems, pp. 2672–
2680. 
Griffin D., and Lim, J., 1984. Signal Estimation from 
Modified Short-Time Fourier Transform, In IEEE 
Transactions on Acoustics, Speech and Signal 
Processing. vol. 32, , pp. 236–243. 
Google, “Cloud speech-to-text,” 
http://cloud.google.com/speech-to-text/, 2018. 
Hawley, Mark S., et al., 2006. Development of a voice-
input voice-output communication aid (VIVOCA) for 
people with severe dysarthria. In International 
Conference on Computers for Handicapped Persons. 
Springer, Berlin, Heidelberg, 
Hironori, D., Nakamura, K., Tomoki, T., Saruwatari, H., 
Shikano, K. 2010. Esophageal speech enhancement 
based on statistical voice conversion with gaussian 
mixture models. IEICE Trans. Inf. Syst. 93 (9), 2472–
2482. 
Hosom, J-P., et al., 2003. Intelligibility of modifications to 
dysarthric speech. In 2003 IEEE International 
Conference on Acoustics, Speech, and Signal 
Processing, 2003. Proceedings. (ICASSP'03). Vol. 1. 
IEEE. 
Isola, P., Zhu., Efros., 2017. Image-to-Image Translation 
with Conditional Adversarial Networks," In 
Proceedings of CVPR. 
Johnson J., A. Alahi, and L. Fei-Fei., 2016. Perceptual 
losses for real-time style transfer and super-resolution. 
In Proceedings of ECCV. 
Kain., Alexander B., et al., 2007. Improving the 
intelligibility of dysarthric speech. In Speech 
communication 49.9. pp.743-759. 
Kain, Van Santen, A. Kain, J. Van Santen., 2009. Using 
speech transformation to increase speech intelligibility 
for the hearing-and speaking-impaired. In Proceedings 
of the ICASSP. 
Kalal, Z., K. Mikolajczyk,  Matas J., Forward backward 
error: Automatic detection of tracking failures. In 
ICPR, 2010. 
Kim, S., et al., 2013. VUI development for Korean people 
with dysarthria." Journal of Assistive Technologies 7.3. 
pp. 188-200. 
Takashima, A., Takiguchi, A., Takashima, T. Takiguchi, 
Ariki, Y., 2013.  Individuality-preserving voice 
conversion for articulation disorders based on non-
negative matrix factorization. In Proceedings of the 
ICASSP (2013). 
Tanaka, T., Toda, G., Neubig, S., Sakti, S., Nakamura A., 
2013. Hybrid approach to electrolaryngeal speech 
enhancement based on spectral subtraction and 
statistical voice conversion. In Proceedings of the 
INTERSPEECH (2013) 
Toda, N., Shikano, M., Nakagiri, K., 2012. Statistical voice 
conversion techniques for body-conducted unvoiced 
speech enhancement. In IEEE Trans. Audio Speech 
Lang. Process., 20 (9), pp. 2505-2517 
Toda, N., Saruwatari S., Shikano, et al., 2014. Alaryngeal 
speech enhancement based on one-to-many eigenvoice 
conversion In IEEE/ACM IEEE Trans. Audio Speech 
Lang. Process
., 22 (1) (2014), pp. 172-183 
Nakamura, T., Toda, H., Saruwatari, K., Shikano., 2006. A 
speech communication aid system for total 
laryngectomies using voice conversion of body 
transmitted artificial speech. In J. Acoust. Soc. Am., 120 
(5) (2006), p. 3351 
Nakamura, T., Toda, H., Saruwatari, K., Shikano., 2012. 
Speaking-aid systems using GMM -based voice 
conversion for electrolaryngeal speech In Speech 
Commun., 54 (1), pp. 134-146 
Shriberg, L. D., and Kwiatkowski J., 1982. Phonological 
disorders I: A diagnostic classification system. In 
Journal of Speech and Hearing Disorders., 47.3, pp. 
226-241. 
Yamagishi, C., Veaux, S., King, S. 2012, Renals Speech 
synthesis technologies for individuals with vocal 
disabilities: voice banking and reconstruction. In 
Acoust. Sci. Technol., 33 (1), pp. 1-5. 
Yang, S. H., and Chung, M., 2019. Self-imitating Feedback 
Generation Using GAN for Computer-Assisted 
Pronunciation Training. In Proceedings of Interspeech 
2019., pp. 1881-1885. 
Zhu, J. Park, T., Isola, Efros A., 2017. Unpaired Image-to-
Image Translation using Cycle-Consistent Adversarial 
Networks," In Proceedings of ICCV.