Brekelmans,  M.  P.,  Fens,  N.,  et  al.  (2016).  Smelling  the 
Diagnosis: The Electronic Nose as Diagnostic Tool in 
Inflammatory  Arthritis.  A  Case-Reference  Study.  (F. 
d’Acquisto, Ed.) PLOS ONE, 11(3), e0151715. 
Brinkman, P., Wagener, A. H. et al. (2019). Identification 
and  prospective  stability  of  electronic  nose  (eNose)–
derived  inflammatory  phenotypes  in  patients  with 
severe asthma. J. of Allergy and Clinical Immunology, 
143(5), 1811-1820.e7. 
Caccami, M. C., Mulla, M. Y. S. et al. (2018). Design and 
Experimentation  of  a  Batteryless  On-Skin  RFID 
Graphene-Oxide  Sensor  for  the  Monitoring  and 
Discrimination  of  Breath  Anomalies.  IEEE  Sensors 
Journal, 18(21), 8893–8901. 
Cai, X., Chen, L., et al. (2017). A Prediction Model with a 
Combination  of  Variables  for  Diagnosis  of  Lung 
Cancer. Medical Science Monitor, 23, 5620–5629. 
Cavallo,  F.,  Esposito,  D.  et  al.  (2013).  Preliminary 
evaluation  of  SensHand  V1  in  assessing  motor  skills 
performance in Parkinson disease (pp. 1–6). IEEE. 
Cha, Y., Seo, J., Kim, J.-S. et al. (2017). Human–computer 
interface  glove  using  flexible  piezoelectric  sensors. 
Smart Materials and Structures, 26(5), 057002. 
Chan,  D.  K.,  Zakko, L.,  et al.  (2017). Breath  Testing  for 
Barrett’s  Esophagus  Using  Exhaled  Volatile  Organic 
Compound Profiling With an Electronic Nose Device. 
Gastroenterology, 152(1), 24–26. 
Chen, Y., Liu, W. et al. (2015). Hybrid facial image feature 
extraction  and  recognition  for  non-invasive  chronic 
fatigue syndrome diagnosis. Computers in Biology and 
Medicine, 64, 30–39. 
Chitkara,  D.,  &  Sharma,  R.  K.  (2016).  Voice  based 
detection of type 2 diabetes mellitus (pp. 83–87). IEEE. 
Collings,  S.,  Thompson,  O.  et  al.  (2016).  Non-Invasive 
Detection of Anaemia Using Digital Photographs of the 
Conjunctiva. (K. Metze, Ed.)PLOS ONE, 11(4) 
Condell,  J.,  Curran,  K.,  et  al.  (2011).  Finger  movement 
measurements  in  arthritic  patients  using  wearable 
sensor enabled gloves. International Journal of Human 
Factors Modelling and Simulation, 2(4), 276. 
Cornet, V. P., Holden, R. J. (2018). Systematic review of 
smartphone-based  passive  sensing  for  health  and 
wellbeing. J. of Biomedical Informatics, 77, 120–132. 
Costantini,  G.,  Casali,  D.  et  al  (2018).  Towards  the 
enhancement  of  body  standing  balance  recovery  by 
means of a wireless audio-biofeedback system. Medical 
Engineering & Physics, 54, 74–81. 
D’Amico, A., Pennazza, G. et al. (2010). An investigation 
on  electronic  nose  diagnosis  of  lung  cancer.  Lung 
Cancer, 68(2), 170–176. 
Dang, W., Manjakkal, L. et al. (2018). Stretchable wireless 
system  for  sweat  pH  monitoring.  Biosensors  and 
Bioelectronics, 107, 192–202. 
Di Lena, M., Porcelli, F., Altomare, D. F. (2016). Volatile 
organic  compounds  as  new  biomarkers  for  colorectal 
cancer: A review. Colorectal Disease, 18(7), 654–663. 
Dragonieri, S, Annema, JT et al (2009). Electronic nose in 
the discrimination of patients with non-small cell lung 
cancer & COPD. Lung Cancer, 64(2),166–170. 
Dragonieri,  S.,  Brinkman,  P.  et  al.  (2013).  An  electronic 
nose  discriminates  exhaled  breath  of  patients  with 
untreated  pulmonary  sarcoidosis  from  controls. 
Respiratory Medicine, 107(7), 1073–1078. 
Dragonieri, S. , Porcelli, F. et al. (2015). An electronic nose 
in the discrimination of obese patients with and without 
obstructive sleep  apnoea. Journal  of Breath  Research, 
9(2), 026005. 
Dragonieri, S., Quaranta, V. N. et al. (2016). An electronic 
nose  may  sniff  out  amyotrophic  lateral  sclerosis. 
Respiratory Physiology & Neurobiology, 232, 22–25. 
Dragonieri, S., Quaranta, V. N. et al. (2018). The ovarian 
cycle  may  influence  the  exhaled  volatile  organic 
compound  profile  analyzed  by  an  electronic  nose. 
Journal of Breath Research, 12(2), 021002. 
Dragonieri, S., Schot, R. et al. (2007). An electronic nose in 
the discrimination of patients with asthma and controls. 
J. of Allergy & Clinical Imm.,120(4), 856–62 
Fitzgerald, J., Fenniri, H. (2017). Cutting Edge Methods for 
Non-Invasive Disease Diagnosis Using E-Tongue and 
E-Nose Devices. Biosensors, 7(4), 59. 
Gardner,  JW,  Bartlett,  PN  (1994).  A  brief  history  of 
electronic noses. Sensors & Actuators B: 18(1), 210. 
Gnucci, M., Flemma, M. et al. (2018). Assessment of Gait 
Harmony in Older and Young People: (pp. 155–160). 
SCITEPRESS - Science and Technology Publications. 
Gonzalo-Ruiz, J., Mas, R. et al. (2009). Early determination 
of  cystic  fibrosis  by  electrochemical  chloride 
quantification in sweat. Biosensors and Bioelectronics, 
24(6), 1788–1791. 
Goor, RMG., Hardy, JCA. et al. (2019). Detecting recurrent 
head and neck cancer using electronic nose technology: 
A feasibility study. Head & Neck, 41(9), 2983–2990. 
van de Goor, R., van Hooren, M., etal. (2018). Training and 
Validating a Portable Electronic Nose for Lung Cancer 
Screening. J. of Thoracic Oncology, 13(5), 676–681. 
Gordon, S. M., Wallace, L. A. et al. (2002). Volatile organic 
compounds as breath biomarkers for active and passive 
smoking. Env. Health Perspectives, 110(7), 689–698. 
Grandez,  K.,  Solas,  G.  et  al.  (2010).  Sensor  device  for 
testing activities in Parkinson and ALS patients. IEEE. 
Guidi,  A.,  Schoentgen,  J.  et  al.  (2015).  Voice  quality  in 
patients  suffering  from  bipolar  disease  (pp.  6106–
6109). IEEE. 
Guo,  L.,  Wang,  C.  et  al.  (2015).  Exhaled  breath  volatile 
biomarker  analysis  for  thyroid  cancer.  Translational 
Research:  The  Journal  of  Laboratory  and  Clinical 
Medicine, 166(2), 188–195. 
Hakim, M., Billan, S. et al. (2011). Diagnosis of head-and-
neck  cancer  from  exhaled  breath.  British  Journal  of 
Cancer, 104(10), 1649–1655. 
Hidayat, A. A., Arief, Z. et al. (2015). Mobile application 
with simple moving average filtering for monit. finger 
muscles therapy of post-stroke people (pp. 1–6). IEEE. 
Hsiao, PC., Yang, SY. et al. (2015). Data glove embedded 
with  9-axis  IMU  and  force  sensing  sensors  for 
evaluation of hand function (pp. 4631–4634). IEEE. 
Ionescu, R., Broza, Y. et al. (2011). Detection of Multiple 
Sclerosis  from  Exhaled  Breath Using Bilayers of 
Polycyclic  Aromatic  Hydrocarbons  and  Single-Wall