
Davidson,  M.  (2014).  Roland-Morris  disability 
questionnaire. Encyclopedia  of  Quality  of  Life  and 
Well-Being Research, 5587-5590. 
Dongen  van,  J.  M.,  van  Hooff,  M.  L.,  Spruit,  M.,  de 
Kleuver, M., & Ostelo, R. W. (2017). Which patient-
reported  factors  predict referral to  spinal  surgery? A 
cohort  study  among  4987  chronic  low  back  pain 
patients. European Spine Journal, 26(11), 2782-2788. 
Dougherty,  J.,  Kohavi,  R.,  &  Sahami,  M.  (1995). 
Supervised  and  unsupervised  discretization  of 
continuous features. In Machine Learning Proceedings 
1995 (pp. 194-202). Morgan Kaufmann. 
Dua, S., Acharya, U. R., & Dua, P. (Eds.). (2014). Machine 
learning  in  healthcare  informatics (Vol.  56).  Berlin: 
Springer. 
Dueck, A. C., Mendoza, T. R., Mitchell, S. A., Reeve, B. 
B., Castro, K. M., Rogak, L.  J.,  ...  &  Li,  Y. (2015). 
Validity  and  reliability  of  the  US  National  Cancer 
Institute’s  patient-reported  outcomes  version  of  the 
common terminology criteria for adverse events (PRO-
CTCAE). JAMA oncology, 1(8), 1051-1059. 
Fleiss,  J.  L.,  &  Cohen,  J.  (1973).  The  equivalence  of 
weighted  kappa  and  the  intraclass  correlation 
coefficient as measures of reliability. Educational and 
psychological measurement, 33(3), 613-619. 
Gross,  D.  P.,  Armijo-Olivo,  S., Shaw,  W.  S.,  Williams-
Whitt, K., Shaw, N. T., Hartvigsen, J., ... & Steenstra, 
I.  A.  (2016).  Clinical  decision  support  tools  for 
selecting  interventions  for  patients  with  disabling 
musculoskeletal disorders: a scoping review. Journal of 
occupational rehabilitation, 26(3), 286-318. 
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, 
P.,  & Witten, I.  H.  (2009).  The WEKA data  mining 
software:  an  update. ACM  SIGKDD  explorations 
newsletter, 11(1), 10-18. 
Han,  J.,  Pei,  J.,  &  Kamber,  M.  (2011). Data  mining: 
concepts and techniques. Elsevier. 
Hill, J. C., Whitehurst, D. G., Lewis, M., Bryan, S., Dunn, 
K.  M.,  Foster,  N.  E.,  ...  &  Sowden,  G.  (2011). 
Comparison of stratified primary care management for 
low back pain with current best practice (STarT Back): 
a randomised  controlled trial. The Lancet, 378(9802), 
1560-1571. 
Hooff van, M. L., van Dongen, J. M., Coupé, V. M., Spruit, 
M.,  Ostelo,  R.  W.,  &  de  Kleuver,  M.  (2018).  Can 
patient-reported profiles avoid unnecessary referral to a 
spine  surgeon?  An  observational  study  to  further 
develop the Nijmegen Decision Tool for Chronic Low 
Back Pain. PloS one, 13(9), e0203518.. 
Hoy, D., Brooks, P., Blyth, F., & Buchbinder, R. (2010). 
The epidemiology of low back pain. Best practice & 
research Clinical rheumatology, 24(6), 769-781. 
Koes, B. W., Van Tulder, M., Lin, C. W. C., Macedo, L. G., 
McAuley, J., & Maher, C. (2010). An updated overview 
of  clinical  guidelines  for  the  management  of  non-
specific low back pain in primary care. European Spine 
Journal, 19(12), 2075-2094. 
Kool, M., Bastiaannet, E., Van de Velde, C. J., & Marang-
van de Mheen, P. J. (2018). Reliability of Self-reported 
Treatment  Data  by  Patients  With  Breast  Cancer 
Compared With Medical Record Data. Clinical breast 
cancer, 18(3), 234-238. 
Landis, J. R., & Koch, G. G. (1977). The measurement of 
observer  agreement  for  categorical  data. biometrics, 
159-174. 
Ling,  C.  X.,  &  Sheng,  V.  S.  (2010).  Cost-sensitive 
learning. Encyclopedia of machine learning, 231-235. 
Linton, S. J., & Boersma, K. (2003). Early identification of 
patients at risk of developing a persistent back problem: 
the predictive validity of the Örebro Musculoskeletal 
Pain Questionnaire. The Clinical journal of pain, 19(2), 
80-86. 
López, V., Fernández, A., García, S., Palade, V., & Herrera, 
F.  (2013).  An  insight  into  classification  with 
imbalanced data: Empirical results and current trends 
on  using  data  intrinsic  characteristics. Information 
sciences, 250, 113-141. 
Oyeyemi,  A.  O.,  &  Scott,  P.  (2018).  Interoperability  in 
health  and  social  care:  organizational  issues  are  the 
biggest  challenge. Journal  of  innovation  in  health 
informatics, 25(3), 196-198. 
Patel,  S.,  Hee, S.  W.,  Mistry,  D.,  Jordan,  J., Brown,  S., 
Dritsaki, M., ... & Madan, J. (2016). Identifying back 
pain  subgroups:  developing and applying approaches 
using individual patient data collected within clinical 
trials. Programme Grants for Applied Research, 4(10). 
Rice, M. E., & Harris, G. T. (2005). Comparing effect sizes 
in follow-up studies: ROC Area, Cohen's d, and r. Law 
and human behavior, 29(5), 615-620. 
Shafique, U., & Qaiser, H. (2014). A comparative study of 
data  mining  process  models  (KDD,  CRISP-DM  and 
SEMMA). International  Journal  of  Innovation  and 
Scientific Research, 12(1), 217-222. 
Shortliffe,  E.  H.,  &  Sepúlveda,  M.  J.  (2018).  Clinical 
decision  support  in  the  era  of  artificial 
intelligence. Jama, 320(21), 2199-2200. 
Simpson,  A.  K.,  Cholewicki,  J.,  &  Grauer,  J.  (2006). 
Chronic  low  back  pain. Current  pain  and  headache 
reports, 10(6), 431-436. 
Sterne, J. A., White, I. R., Carlin, J. B., Spratt, M., Royston, 
P.,  Kenward,  M.  G.,  ...  &  Carpenter,  J.  R.  (2009). 
Multiple  imputation  for  missing  data  in 
epidemiological  and  clinical  research:  potential  and 
pitfalls. Bmj, 338, b2393. 
Szende,  A.  G.  O.  T.  A.  (2007). EQ-5D  value  sets: 
inventory,  comparative  review  and  user  guide.  M. 
Oppe,  &  N.  J.  Devlin  (Eds.).  Berlin,  Germany:: 
Springer. 
Tait, R. C., Chibnall, J. T., & Krause, S. (1990). The pain 
disability index: psychometric properties. Pain, 40(2), 
171-182. 
Widerström, B., Olofsson, N., Boström, C., & Rasmussen-
Barr,  E.  (2016).  Feasibility  of  the  subgroup  criteria 
included  in  the  treatment-strategy-based  (TREST) 
classification  system  (CS)  for  patients  with  non-
specific low back pain (NSLBP). Manual therapy, 23, 
90-97. 
HEALTHINF 2020 - 13th International Conference on Health Informatics
124