Delorme, A., Palmer, J., Onton, J., Oostenveld, R., & 
Makeig, S. (2012). Independent EEG sources are 
dipolar.  PLoS ONE,  7(2). 
https://doi.org/10.1371/journal.pone.0030135 
Dick, O. E., & Svyatogor, I. A. (2012). Potentialities of 
the wavelet and multifractal techniques to evaluate 
changes in the functional state of the human brain. 
Neurocomputing,  82, 207–215. 
https://doi.org/10.1016/j.neucom.2011.11.013 
Dick, O. E., Svyatogor, I. A., Ishinova, V. A., & 
Nozdrachev, A. D. (2012). Fractal characteristics of 
the functional state of the brain in patients with 
anxiuos phobic disorders. Human Physiology,  38(3), 
249–254. 
https://doi.org/10.1134/S036211971202003X 
Dutta, S., Ghosh, D., Samanta, S., & Dey, S. (2014). 
Multifractal parameters as an indication of different 
physiological and pathological states of the human 
brain.  Physica A: Statistical Mechanics and Its 
Applications,  396, 155–163. 
https://doi.org/10.1016/j.physa.2013.11.014 
Easwaramoorthy, D., & Uthayakumar, R. (2010). Analysis 
of biomedical EEG signals using Wavelet Transforms 
and Multifractal Analysis. Communication Control 
and Computing Technologies (ICCCCT), 2010 IEEE 
International Conference On. 
https://doi.org/10.1109/ICCCCT.2010.5670780 
Eke, A., Herman, P., Kocsis, L., & Kozak, L. R. (2002). 
Fractal characterization of complexity in temporal 
physiological signals. Physiological Measurement, 
23(1). https://doi.org/10.1088/0967-3334/23/1/201 
Figliola, A., Serrano, E., & Rosso, O. A. (2007). 
Multifractal detrented fluctuation analysis of tonic-
clonic epileptic seizures.  123, 117–123. 
https://doi.org/10.1140/epjst/e2007-00079-9 
Ghaderi, A. H., Moradkhani, S., Haghighatfard, A., 
Akrami, F., Khayyer, Z., & Balcı, F. (2018). Time 
estimation and beta segregation: An EEG study and 
graph theoretical approach. PLoS ONE,  13(4), 1–16. 
https://doi.org/10.1371/journal.pone.0195380 
Goldberger, A. L., Amaral, L. A. N., Hausdorff, J. M., 
Ivanov, P. C., Peng, C.-K., & Stanley, H. E. (2002). 
Fractal dynamics in physiology: Alterations with 
disease and aging. Proceedings of the National 
Academy of Sciences,  99(Supplement 1), 2466–2472. 
https://doi.org/10.1073/pnas.012579499 
Ihlen, E. A. F. (2012). Introduction to multifractal 
detrended fluctuation analysis in Matlab. Frontiers in 
Physiology,  3 JUN(June), 1–18. 
https://doi.org/10.3389/fphys.2012.00141 
Kantelhardt, J. W., Zschiegner, S. a., Koscielny-Bunde, E., 
Havlin, S., Bunde, A., Stanley, H. E., … Stanley, H. E. 
(2002). Multifractal detrended fluctuation analysis of 
nonstationary time series. Physica A: Statistical 
Mechanics and Its Applications,  316(1), 87–114. 
https://doi.org/10.1016/S0378-4371(02)01383-3 
Khoshnoud, S., Nazari, M. A., & Shamsi, M. (2018). 
Functional brain dynamic analysis of ADHD and 
control children using nonlinear dynamical features of 
EEG signals. Journal of Integrative Neuroscience, 
17(1), 17–30. https://doi.org/10.3233/JIN-170033 
Khoshnoud, S., Shamsi, M., Nazari, M. A., & Makeig, S. 
(2017). Different cortical source activation patterns in 
children with attention deficit hyperactivity disorder 
during a time reproduction task. Journal of Clinical 
and Experimental Neuropsychology,  40(7), 633–649. 
https://doi.org/10.1080/13803395.2017.1406897 
Kononowicz, T. W., & Rijn, H. van. (2015). Single trial 
beta oscillations index time estimation. 
Neuropsychologia,  75, 381–389. 
https://doi.org/10.1016/j.neuropsychologia.2015.06.01
4 
Ma, Q., Ning, X., Wang, J., & Bian, C. (2006). A new 
measure to characterize multifractality of sleep 
electroencephalogram.  Chinese Science Bulletin, 
51(24), 3059–3064. https://doi.org/10.1007/s11434-
006-2213-y 
Maity, A. K., Pratihar, R., Mitra, A., Dey, S., Agrawal, V., 
Sanyal, S., … Ghosh, D. (2015). Multifractal 
Detrended Fluctuation Analysis of alpha and theta 
EEG rhythms with musical stimuli. Chaos, Solitons 
and Fractals,  81, 52–67. 
https://doi.org/10.1016/j.chaos.2015.08.016 
Makeig, S., Bell, A. J., Jung, T.-P., & Sejnowski, T. J. 
(1996). Independent component analysis of 
electroencephalographic data. Advances in Neural 
Information Processing Systems, 145–151. 
Makeig, S., Westerfield, M., Jung, T.-P., Enghoff, S., 
Townsend, J., Courchesne, E., & Sejnowski, T. J. 
(2002). Dynamic Brain Sources Visual Evoked 
Response. Science, 295(January), 690–694. 
Natarajan, K., Acharya U, R., Alias, F., Tiboleng, T., & 
Puthusserypady, S. K. (2004). Nonlinear analysis of 
EEG signals at different mental states. Biomedical 
Engineering Online,  3(1), 7. 
https://doi.org/10.1186/1475-925X-3-7 
Noreika, V., Falter, C. M., & Rubia, K. (2013). Timing 
deficits in attention-deficit/hyperactivity disorder 
(ADHD): Evidence from neurocognitive and 
neuroimaging studies. Neuropsychologia, 51(2), 235–
266. https://doi.org/10.1016/j.neuropsychologia. 
2012.09.036 
Onton, J., & Makeig, S. (2006). Chapter 7 Information-
based modeling of event-related brain dynamics. 
Progress in Brain Research, 
159, 99–120. 
https://doi.org/10.1016/S0079-6123(06)59007-7 
Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2006). 
Super-Gaussian mixture source model for ICA. 
Lecture Notes in Computer Science (Including 
Subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics),  3889 LNCS, 854–
861. https://doi.org/10.1007/11679363_106 
Palmer, J. A., Kreutz-Delgado, K., & Makeig, S. (2011). 
AMICA: An adaptive mixture of independent 
component analyzers with shared components. San 
Diego, CA: Technical report, Swartz Center for 
Computational Neuroscience. 
Palmer, J. A., Makeig, S., Kreutz-Delgado, K., & Rao, B. 
D. (2008). Newton method for the ICA mixture model.