controllers  can  use  other control  methods  to  ensure 
that  motor  speed  is  stable  on  flat  and  sloping 
surfaces,  and  to  improve  processing  speed  and 
object  detection  accuracy.  The  offline  and  realtime 
test  results  show  fairly  accurate  results  where  a 
wheelchair  is  able  to  detect  objects  in  the  form  of 
walls at an angle of less than 90 degrees. 
Incorporation  of  additional  sensors  such  as  an 
ultrasonic  sensor  to  detect  paths  before  the  IMU 
sensor detects surface slope is necessary. The motor 
used must be equipped with a speed reading so that 
the accuracy of the speed reading can be better.  
ACKNOWLEDGEMENTS 
This  research  was  supported  by  Technical 
Implementation  Unit  for  Instrumentation 
Development,  Indonesian  Institute  of  Sciences, 
Department  of  Electrical  Engineering,  Universitas 
Padjadjaran, and Toba Research Center, Indonesia. 
REFERENCES 
Aktar, N., Jaharr, I., & Lala, B., 2019. Voice Recognition 
based  intelligent  Wheelchair  and  GPS  Tracking 
System.  2nd  International  Conference  on  Electrical, 
Computer  and  Communication  Engineering,  ECCE 
2019,  February. 
https://doi.org/10.1109/ECACE.2019.8679163. 
Al-Neami,  A.  Q.  H.,  &  Ahmed,  S.  M.,  2018.  Controlled 
Wheelchair  System  Based  on  Gyroscope  Sensor  for 
Disabled  Patients.  Biosciences  Biotechnology 
Research  Asia,  15(4),  921–927. 
https://doi.org/10.13005/bbra/2703. 
Alkhalid, F. F., & Oleiwi, B. K., 2019. Smart Autonomous 
Wheelchair Controlled by Voice Commands-Aided by 
Tracking  System.  Iraqi  Journal  of  Computer, 
Communication, Control and System Engineering, 82–
87. https://doi.org/10.33103/uot.ijccce.19.1.10 
Aquilina, M., Bugeja, M. K., & Fabri, S. G., 2019. Smart 
wheelchairs: Using robotics to bridge the gap between 
prototypes and  cost-effective set-ups. ICINCO  2019 - 
Proceedings  of  the  16th  International  Conference  on 
Informatics  in  Control,  Automation  and  Robotics, 
2(Icinco),  181–189. 
https://doi.org/10.5220/0007796801810189. 
Dakhilallah,  B.,  Alrashdi,  S.,  Rao,  K.  P.,  &  Alotaibi,  N. 
D.,  2019.  Smart  Navigation  and  Control  System  for 
Electric Wheelchair American Journal of Engineering 
Research (AJER). 4, 90–94. 
Hasriyani, & H., 2018. Bab II tinjauan  pustaka BBLR. 5, 
1–40. http://eprints.undip.ac.id/62287/4/BAB_II.pdf 
Ii, B. A. B., 2001. Universitas Sumatera Utara 6. 1(2), 6–
38. 
Manjunath,  G.,  2018.  Autonomous  Wheelchair  with  a 
Smart Driving Mode and a Wi-Fi Positioning System. 
April. 
Pingali,  T.  R.,  Lemaire,  E.  D.,  &  Baddour,  N.,  2019. 
Ultrasonic  tethering  to  enable  side-by-side  following 
for  powered  wheelchairs.  Sensors  (Switzerland), 
19(1). https://doi.org/10.3390/s19010109 
Pu,  J.,  Jiang,  Y.,  Xie,  X.,  Chen,  X.,  Liu,  M.,  &  Xu,  S., 
2018. Low cost sensor network for obstacle avoidance 
in  share-controlled  smart  wheelchairs  under  daily 
scenarios.  Microelectronics  Reliability,  83(March), 
180–186. 
https://doi.org/10.1016/j.microrel.2018.03.003 
Rojas,  M.,  Ponce,  P.,  &  Molina,  A., 2018.  A  fuzzy  logic 
navigation controller implemented in  hardware for  an 
electric wheelchair. International Journal of Advanced 
Robotic  Systems,  15(1),  1–12. 
https://doi.org/10.1177/1729881418755768 
Roslan, M., Yahya, M., Ahmad, Z., Hani, A., & Mokhtar, 
I.,  2017.  International  Journal  of  Advanced  and 
Applied Sciences. Order, 14(4), 18. 
Saputra,  D.  A.,  2013.  Simulasi  Pemrograman  Sistem 
Pengendali  Kecepatan  Pada  Rancang  Bangun  Mobil 
Remote Kontrol Menggunakan PWM Berbasis Sensor 
Ultrasonik  HC-SR04  dan  Mikrokontroler  Arduino. 
Universitas  Muhammadiyah  Surakarta. 
https://doi.org/10.1017/CBO9781107415324.004 
Setyawan,  B.,  Andryana,  S.,  &  Winarsih,  W.,  2018. 
Sistem  Deteksi  Menggunakan  Sensor  Ultrasonik 
berbasis  Arduino  mega  2560  dan  Processing  untuk 
Sistem Keamanan Rumah. J I M P - Jurnal 
Informatika  Merdeka  Pasuruan,  3(3),  15–20. 
https://doi.org/10.37438/jimp.v3i3.183 
Subroto,  T.,  &  Sholihah,  W.,  2018.  Analisis  Hambatan 
Belajar Pada Materi Trigonometri Dalam Kemampuan 
Pemahaman  Matematis  Siswa.  IndoMath:  Indonesia 
Mathematics Education, 1(2), 109. 
A.  Turnip,  M.  A.  Suhendra  and  Mada  Sanjaya  W.  S., 
2015. Brain-controlled wheelchair based EEG-SSVEP 
signals  classified  by  nonlinear  adaptive  filter.  IEEE 
International  Conference  on  Rehabilitation  Robotics 
(ICORR),  Singapore,  2015,  pp.  905-908,  doi: 
10.1109/ICORR.2015.7281318. 
M.  Turnip  et  al.,  "An  application  of  online  ANFIS 
classifier  for  wheelchair  based  brain  computer 
interface,"  2015  International  Conference  on 
Automation,  Cognitive  Science,  Optics,  Micro 
Electro-Mechanical  System,  and  Information 
Technology  (ICACOMIT),  Bandung,  2015,  pp.  134-
137, doi: 10.1109/ICACOMIT.2015.7440192. 
A.  Turnip,  A.  I.  Simbolon, M. F. Amri and M. A. 
Suhendra,  "Utilization  of  EEG-SSVEP  method  and 
ANFIS  classifier  for  controlling  electronic 
wheelchair,"  2015  International  Conference  on 
Technology, Informatics, Management, Engineering & 
Environment  (TIME-E),  Samosir,  2015,  pp.  143-146, 
doi: 10.1109/TIME-E.2015.7389763. 
A.  Turnip,  T.  Hidayat  and  D.  E.  Kusumandari, 
"Development  of  brain-controlled  wheelchair 
supported  by  raspicam  image  processing  based