in Higher Education. International Journal for 
Educational Integrity. Vol. 12 (1): 4. 
Ouf, S., Abd Ellatif, M., Salama, S.E., and Helmy, Y., 2017. 
A Proposed Paradigm for Smart Learning Environment 
Based on Semantic Web. Computers in Human 
Behavior. Vol. 72, pp. 796–818. 
Perkins, D.N., 1995. L’individu-plus Une Vision Distribuée 
de la Pensée et de l’Apprentissage. Revue française de 
pédagogie. Vol. 111, pp. 57–71. 
Negre E., 2015. Information and Recommender Systems. 
Wiley Online Library. Vol 4.  
FanaeeTork, H. and Yazdi, M., 2013. A semantic VSM-
based recommender system. Int. J. Computer Theory 
Eng. Vol. 5 (2), pp. 331-336. 
Yoldar, M.T. and Özcan, U., 2019. Collaborative targeting: 
Biclustering-based online ad recommendation Electron. 
Commer. Res. Appl. Vol. 35, Article 100857. 
Paradarami, T.K., Bastian, N.D., and Wightman, J.L., 2017. 
A hybrid recommender system using artificial neural 
networks. Expert Syst. Appl. Vol. 83, pp. 300-313. 
Pan, P.Y., Wang, C.H., Horng, G.J. and Cheng, S.T., 2010. 
The development of an ontology based adaptive 
personalized recommender system. In: ICEIE 2010–
2010 Int. Conf. Electron. Inf. Eng. Proc. Kyoto, Japan, 
pp. 76–80. 
Aguilar, J., Valdiviezo-Díaz, P. and Riofrio, G., 2017. A 
general framework for intelligent recommender 
systems. Applied Computing and Informatics. Vol. 13 
(2), pp. 147-160. 
Zheng, X.L., Chen, C.C., Hung, J.L., He, W., Hong F.X. 
and Lin, Z., 2015. A hybrid trust-based recommender 
system for online communities of practice. IEEE Trans. 
Learn. Technol. Vol. 8, pp. 345–356. 
Chen, W., Niu, Z., Zhao, X. and Li, Y., 2014. A hybrid 
recommendation algorithm adapted in e-learning 
environments. World Wide Web. Vol. 17, pp. 271–284. 
Takano, K. and Li, K.F., 2010. An adaptive e-learning 
recommender based on user’s webbrowsing behavior. 
In: Proc. - Int. Conf. P2P, Parallel, Grid, Cloud Internet 
Comput. pp. 123–131. 
Kardan, A.A. and Ebrahimi, M., 2013. A novel approach to 
hybrid recommendation systems based on association 
rules mining for content recommendation in 
asynchronous discussion groups. Inf. Sci. Vol. 219, pp. 
93–110. 
Sivaramakrishnan, N., Subramaniyaswamy, V., 
Arunkumar, S. and Soundarya Rathna, P., 2018. 
VALIDATING EFFECTIVE RESUME BASED ON 
EMPLOYER’S INTEREST WITH 
RECOMMENDATION SYSTEM. International 
Journal of Pure and Applied Mathematics, Academic 
Publishing Ltd. Vol. 119 (12e), pp.13261-13272.  
Geng, Z.Q., Li, Y.N., Han, Y.M., Zhua, Q.X., 2018. A 
novel self-organizing cosine similarity learning 
network: An application to production prediction of 
petrochemical systems. Energy, Vol. 142, pp. 400-410. 
Reiner, D., Tan, M., Ventikos, P., Richard, E., 2001. 
System and method for logical view analysis and 
visualization of user behavior in a distributed computer 
network. United States Patent. 
Benevenuto, F., Rodrigues, T., Cha, M., Almeida, V., 2009. 
Characterizing user behavior in online social networks. 
Proceedings of the 9th ACM SIGCOMM conference on 
Internet measurement. pp. 49–62.  
Alexandros, K., and Georgios, E., 2013. A Framework for 
Recording, Monitoring and Analyzing Learner 
Behavior while Watching and Interacting with Online 
Educational Videos, 2013 IEEE 13th International 
Conference on Advanced Learning Technologies, 
Beijing. pp. 20-22. 
Ali Ben Ameur, M., Saleh, M., Abel, M-H. and Negre, E., 
2017. Recommendation of Pedagogical Resources 
within a Learning Ecosystem. 9th International 
Conference on Management of Digital EcoSystems 
(MEDES ’17). Nov 2017, Bangkok, Thailand. pp.14-21. 
C.Peterson, J., Chen, D., and L.Griffiths, T., 2020. 
Parallelograms revisited: Exploring the limitations of 
vector space models for simple analogies. Cognition. 
Vol. 205, December 2020, 104440. 
W.Sholikah, R., Z. Arifin, A., Fatichah, C., and 
Purwarianti, A., 2020. Multi task learning with general 
vector space for cross-lingual semantic relation 
detection. Journal of King Saud University - Computer 
and Information Sciences.  
Xia, P.P., Zhang, L., Li, F.Z., 2015. Learning similarity 
with cosine similarity ensemble. Information Sciences. 
Vol. 307, pp. 39–52. 
Lü, L., Zhou, T., 2011. Link prediction in complex 
networks: A survey. Physica A. Vol. 390 (6), pp. 1150–
1170. 
Jalili, M., Ahmadian, S., Izadi, M., Moradi, P., and Salehi, 
M., 2018. Evaluating collaborative filtering 
recommender algorithms: A survey. IEEE Access. Vol. 
6, pp. 74003–74024.  
Hawashin, B., Lafi, M., Kanan, T., and Mansour, A., 
2019. An efficient hybrid similarity measure based on 
user interests for recommender systems. Expert Syst. 
e12471. 
Su, Z., Zheng, X.L., Ai, J., Shen, Y.M., and Zhang, X.X., 
2020. Link prediction in recommender systems based on 
vector similarity. Physica A: Statistical Mechanics and 
its Applications. Vol. 560, 15 December 2020, 125154. 
Kanoje, S., Mukhopadhyay, D., and Girase, S., 2016. User 
Profiling for University Recommender System Using 
Automatic Information Retrieval. Procedia Computer 
Science. Vol. 78, 2016, pp. 5-12. 
Pan, Y.H., Huo, Y.F., Tang, J., Zeng Y.F., and Chen, B.L., 
2020. Exploiting Relational Tag Expansion for 
Dynamic User Profile in a Tag-aware Ranking 
Recommender System. Information Sciences. Available 
online 18 September 2020. 
Abel, M.H., 2015. Knowledge map-based web platform to 
facilitate organizational learning return of experiences. 
Comput. Hum. Behav. Vol. 51, pp. 960-966.