John,  S.  E.,  Gurnani,  A.  S.,  Bussell,  C.,  Saurman,  J.  L., 
Griffin, J. W., & Gavett, B. E. (2016). The effectiveness 
and  unique  contribution  of  neuropsychological  tests 
and the δ latent phenotype in the differential diagnosis 
of dementia in the uniform data set. Neuropsychology, 
30(8), 946. 
Joshi,  A.  V.  (2020).  Perceptron  and  Neural  Networks.  In 
Machine Learning and Artificial Intelligence (pp. 43–
51). Springer, Cham. 
Kang, M. J., Kim, S. Y., Na, D. L., Kim, B. C., Yang, D. 
W., Kim, E.-J., Na, H. R., Han, H. J., Lee, J.-H., Kim, 
J. H., Park, K. H., Park, K. W., Han, S.-H., Kim, S. Y., 
Yoon, S. J., Yoon, B., Seo, S. W., Moon, S. Y., Yang, 
Y.,  …  Youn,  Y.  C.  (2019).  Prediction  of  cognitive 
impairment via deep learning trained with multi-center 
neuropsychological  test  data.  BMC Medical 
Informatics and Decision Making,  19(1),  231. 
https://doi.org/10.1186/s12911-019-0974-x 
Khan, T., & Jacobs, P. (2020). Prediction of mild cognitive 
impairment using movement complexity. IEEE Journal 
of Biomedical and Health Informatics. 
https://doi.org/10.1109/JBHI.2020.2985907 
Kingma,  D.  P.,  &  Ba,  J.  (2014).  Adam:  A  method  for 
stochastic  optimization.  ArXiv Preprint 
ArXiv:1412.6980. 
Lee, G. G. C., Huang, P.-W., Xie, Y.-R., & Pai, M.-C. 
(2019).  Classification  of  Alzheimer’s  Disease,  Mild 
Cognitive Impairment, and Cognitively Normal Based 
on Neuropsychological Data via Supervised Learning. 
TENCON 2019-2019 IEEE Region 10 Conference 
(TENCON), 1808–1812. 
Marsland,  S.  (2015).  Machine learning: An algorithmic 
perspective (2nd ed). CRC press. 
Nagumo, R., Zhang, Y., Ogawa, Y., Hosokawa, M., Abe, 
K., Ukeda, T., Sumi, S., Kurita, S., Nakakubo, S., Lee, 
S., Doi, T., & Shimada, H. (2020). Automatic Detection 
of Cognitive Impairments through Acoustic Analysis of 
Speech.  Current Alzheimer Research,  17(1),  60–68. 
https://doi.org/10.2174/1567205017666200213094513 
Pedregosa,  F.,  Varoquaux,  G.,  Gramfort,  A.,  Michel,  V., 
Thirion,  B.,  Grisel,  O.,  Blondel,  M.,  Prettenhofer,  P., 
Weiss,  R.,  &  Dubourg,  V.  (2011).  Scikit-learn: 
Machine  learning  in  Python.  Journal of Machine 
Learning Research, 12(Oct), 2825–2830. 
Pellegrini,  E.,  Ballerini,  L.,  Hernandez,  M.  D.  C.  V., 
Chappell,  F.  M.,  González-Castro,  V.,  Anblagan,  D., 
Danso,  S.,  Muñoz-Maniega,  S.,  Job,  D.,  Pernet,  C., 
Mair, G., MacGillivray, T. J., Trucco, E., & Wardlaw, 
J.  M.  (2018).  Machine  learning  of  neuroimaging  for 
assisted  diagnosis  of  cognitive  impairment  and 
dementia:  A  systematic  review.  Alzheimer’s & 
Dementia (Amsterdam, Netherlands),  10,  519–535. 
https://doi.org/10.1016/j.dadm.2018.07.004 
Petersen, R. C., Aisen, P. S., Beckett, L. A., Donohue, M. 
C., Gamst, A. C., & Harvey, D. J. (2010). Alzheimer’s 
disease  neuroimaging  initiative  (ADNI).  Neurology, 
74(3), 201–209. 
Pfeffer, R. I., Kurosaki, T. T., Harrah Jr, C. H., Chance, J. 
M.,  &  Filos,  S.  (1982).  Measurement  of  functional 
activities in older adults in the community. Journal of 
Gerontology, 37(3), 323–329. 
Rosen,  W.,  Mohs,  R.,  &  Davis,  K.  (1984).  Alzheimer’s 
Disease  Assessment  Scale—Cognitive  and  Non-
Cognitive  Sections  (ADAS-Cog,  ADAS  Non-Cog). 
Journal of Psychiatry, 141, 1356–1364. 
Seo,  E.  H.  (2018).  Neuropsychological  assessment  of 
dementia  and  cognitive  disorders.  Journal of Korean 
Neuropsychiatric Association, 57(1), 2–11. 
Shaffer, J. L., Petrella, J. R., Sheldon, F. C., Choudhury, K. 
R.,  Calhoun,  V.  D.,  Coleman,  R.  E.,  Doraiswamy,  P. 
M., & Initiative, A. D. N. (2013). Predicting cognitive 
decline in subjects at risk for Alzheimer disease by 
using combined cerebrospinal fluid, MR imaging, and 
PET biomarkers. Radiology, 266(2), 583–591. 
Sharma, S. (2017). Activation functions in neural networks. 
Towards Data Science, 6(12), 310–316. 
Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A., 
Craft, S., Fagan, A. M., Iwatsubo, T., Jack Jr, C. R., 
Kaye, J., & Montine, T. J. (2011). Toward defining the 
preclinical  stages  of  Alzheimer’s  disease: 
Recommendations  from  the  National  Institute  on 
Aging-Alzheimer’s  Association  workgroups  on 
diagnostic  guidelines  for  Alzheimer’s  disease. 
Alzheimer’s & Dementia, 7(3), 280–292. 
Storey,  E.,  &  Kinsella,  G.  J.  (2007).  Principles  of 
neuropsychometric  assessment.  In  Neurology and 
Clinical Neuroscience (pp. 22–30). Mosby. 
Taylor, C. A., Greenlund, S. F., McGuire, L. C., Lu, H., & 
Croft, J. B. (2017). Deaths from Alzheimer’s Disease—
United  States,  1999–2014.  MMWR. Morbidity and 
Mortality Weekly Report, 66(20), 521. 
Xu,  B.,  Wang,  N.,  Chen,  T.,  &  Li,  M.  (2015).  Empirical 
evaluation  of  rectified  activations  in  convolutional 
network. ArXiv Preprint ArXiv:1505.00853. 
Yeatts,  S.  D.,  Palesch,  Y.  Y.,  &  Temkin,  N.  (2018). 
Biostatistical issues in TBI clinical trials. In Handbook 
of Neuroemergency Clinical Trials  (pp.  167–185). 
Elsevier.