information, linking messages with the same theme 
in common, and even generating metrics for 
classifying emotions. 
As future works, we suggest improvements to the 
translation process, performing bi-gram and tri-gram 
words as proposed in the work by Lopes Rosa 
(2015). Use the new method proposed to classify 
emotions at a second level, such as anger, fear, love 
and hate; above all, to use a base similar to 
Sentiwordnet with values of positivity, negativity 
and more accurate objectivity for the dominance of 
calamity. 
ACKNOWLEDGEMENTS 
The authors are grateful to the CNPQ process 
141077/2015-8 for the support received. 
REFERENCES 
Berners-Lee, Tim. The WorldWideWeb browser. World 
Wide Web Consortium. Homepage, 
https://www.w3.org/People/Berners-Lee/WorldWide 
Web.html, last accessed 2018/03/ 01.  
Catae, F. S. Classificação Automática de Texto por Meio 
de Similaridade de Palavras: um algoritmo mais 
eficiente. Master's Dissertation, Universidade de São 
Paulo (2012). 
Chaubard, F., Fang, M., Genthial, G. et al. Natural 
language processing with deep learning. Lecture 
Notes: Part I - Winter - 2017. Homepage, 
https://tensorflowkorea.files.word press.com/2017/03/ 
cs224n-2017winter-notes-all.pdf, last accessed 
2018/04/15. 
Dosciatti, M. M.; Ferreira, E. C. L. P. C. Identificando 
emoções em textos em português do brasil usando 
máquina de vetores de suporte em solução multiclasse. 
ENIAC-Encontro Nacional de Inteligência Artificial e 
Computacional. Fortaleza, Brasil (2013). 
Duarte, E. S. Sentiment analysis on twitter for the 
portuguese language. PhD Thesis, Faculdade de 
Ciências e Tecnologia (2013).  
Esuli, A., Sebastiani, F. Sentiwordnet: A publicly 
available lexical resource for opinion mining. In: In 
Proceedings of the 5th Conference on Language 
Resources and Evaluation - LREC’06, 417-422 
(2006). 
Freitas, L. D; Vieira, R. Exploring resources for sentiment 
analysis in portuguese language. In: IEEE. 2015 
Brazilian Conference on Intelligent Systems (BRACIS) 
(2015). 
Freitas, L. A. de. Feature-level sentiment analysis applied 
to brazilian Portuguese reviews. PhD Thesis, 
Pontifícia Universidade Católica do Rio Grande do Sul 
(2015). 
Grigori, S. et al. Empirical study of machine learning 
based approach for opinion mining in tweets. 
In Proceedings of the 11th Mexican international 
conference on Advances in Artificial Intelligence 
(2012). 
Hamouda, A., Rohaim, M. Reviews classification using 
sentiwordnet lexicon. In: World Congress on 
Computer Science and Information Technology 
(2011). 
Internet World Stats. Top 10 Languages Used in the Web - 
December 31, 2017. Homepage, 
https://www.internetworldstats.com/stats7.htm, last 
accessed 2018/04/01. 
Internet World Stats. Top 20 Countries With the Highest 
Number of Internet Users - December 31, 2017. 
Homepage, https://www.internetworldstats.com/ 
top20.htm, last accessed 2018/02/01. 
Kanavos, A. et al. Conversation Emotional Modeling in 
Social Networks, Tools with Artificial Intelligence 
(ICTAI),  2014 IEEE 26th International Conference 
(2014).  
Liu, B. Sentiment Analysis and Opinion Mining 
(Synthesis Lectures on Human Language 
Technologies. California: Morgan & Claypool 
Publishers (2012). 
Lopes Rosa, R. Análise de sentimentos e afetividade de 
textos extraídos das redes sociais. Tese de Doutorado 
– Escola Politécnica da Universidade de São Paulo 
(2015).  
Percy, C. E. et al. Synchronic Corpus Linguistics – Papers 
from the sixteenth International. Conference on 
English Language and Research on Computerized 
Corpora (ICAME 16), Amsterdam/Atlanta (1996). 
Plutchik, R. The nature of emotions. v. 89, n. 4, p. 344–
350 (2001). 
Porshnev, A.; Redkin, I.; Shevchenko, A., "Machine 
Learning in Prediction of Stock Market Indicators 
based on Historical Data and Data from Twitter 
Sentiment Analysis," Data Mining Workshops 
(ICDMW), 2013 IEEE 13th International Conference 
(2013). 
Sousa, R. C. C. Identificando Sentimentos de Textos em 
Português com o Sentiwordnet traduzido. Monografia 
– UFC, curso de Ciência da Computação (2016). 
Santos, D. L. B. Metodologia de Identificação de 
Polaridade em Textos com Base em Projetos de Lei 
Brasileiros. Dissertação de mestrado – UFRJ, 
Programa de Engenharia Civil (2017).  
Segers, R., Caselli, T., Vossen, P. The Circumstantial 
Event Ontology (CEO). Proceedings of the Events and 
Stories in the News Workshop. Association for 
Computational Linguistics, Vancouver, Canada 
(2017).  
Semantic Web - W3C. Semantic Web. Homepage, 
https://www.w3.org/standards/semantic web/, last 
accessed 2018/03/01. 
The Statistics Portal. Most-used languages on Twitter as 
of September 2013. Homepage, 
https://www.statista.com/statistics/267129/most-used-
languages-on-twitter/, last accessed 2018/04/08.