
 
and  G4  (cesarean  section  without  achieving  active 
phase of labor) during the first four hours after labor 
onset. Moreover, deciles of the EHG-Bursts’ PSD are 
potentially  useful  to  discriminate  between  the 
different outcomes of the labor induction, suggesting 
the feasibility of EHG recording for predicting labor 
induction success.   
ACKNOWLEDGEMENTS 
This work was supported in part by the the Ministry 
of Economy and Competitiveness and the European 
Regional Development Fund (DPI2015-68397-R). 
REFERENCES 
Alamedine,  D.  et  al.  (2014)  ‘Selection  algorithm  for 
parameters to characterize uterine EHG signals for the 
detection of  preterm  labor’,  Signal, Image and Video 
Processing, 8(6), pp. 1169–1178. doi: 10.1007/s11760-
014-0655-2. 
Alamedine,  D.,  Khalil,  M.  and  Marque,  C.  (2013) 
‘Comparison  of  Different  EHG  Feature  Selection 
Methods  for  the  Detection  of  Preterm  Labor’, 
Computational  and  Mathematical  Methods  in 
Medicine, 2013, pp. 1–9. doi: 10.1155/2013/485684. 
Alberola-Rubio,  J.  et  al.  (2013)  ‘Comparison  of  non-
invasive electrohysterographic recording techniques for 
monitoring  uterine  dynamics’,  Medical  Engineering 
and  Physics,  35,  pp.  1736–1743.  doi: 
10.1016/j.medengphy.2013.07.008. 
Aviram, A.  et  al. (2014)  ‘Effect  of  Prostaglandin E2  on 
Myometrial Electrical Activity in Women Undergoing 
Induction of Labor’, J Perinatol, 31, pp. 413–418. doi: 
10.1055/s-0033-1352486. 
Baños, N. et al. (2015) ‘Definition of Failed Induction of 
Labor and Its Predictive Factors: Two Unsolved Issues 
of an Everyday Clinical Situation’, Fetal Diagn Ther, 
38, pp. 161–169. doi: 10.1159/000433429. 
Bastani,  P.  et  al.  (2011)  ‘Transvaginal  ultrasonography 
compared  with  Bishop  score  for  predicting  cesarean 
section after induction of labor’, International Journal 
of  Women’s  Health,  3,  pp.  277–280.  doi: 
10.2147/IJWH.S20387. 
Benalcazar-Parra,  C.  et  al.  (2017)  ‘Characterization  of 
Uterine  Response  to  Misoprostol  based  on 
Electrohysterogram’,  in  Proceedings  of  the  10th 
International  Joint  Conference  on  Biomedical 
Engineering Systems and Technologies. SCITEPRESS 
- Science and Technology Publications, pp. 64–69. doi: 
10.5220/0006146700640069. 
Bishop,  E.  H.  (1964)  ‘Pelvic  Scoring  For  Elective 
Induction’, Obstetrics and gynecology, 24, pp. 266–8. 
Available  at: 
http://www.ncbi.nlm.nih.gov/pubmed/14199536 
(Accessed: 6 June 2017). 
Buhimschi, C., Boyle,  M.  B. and  Garfield,  R. E. (1997) 
‘Electrical  activity  of  the  human  uterus  during 
pregnancy  as  recorded  from  the  abdominal  surface’, 
Obstetrics  &  Gynecology,  90(1),  pp.  102–111.  doi: 
10.1016/S0029-7844(97)83837-9. 
Catherine Tolcher, M.  et al. (2015)  ‘Predicting Cesarean 
Delivery After Induction of Labor Among Nulliparous 
Women at Term’, Obstet Gynecol, 126(5), pp. 1059–
1068. doi: 10.1097/AOG.0000000000001083. 
Crane, J. M. G. et al. (2004) ‘Predictors of successful labor 
induction  with  oral  or  vaginal  misoprostol’,  The 
Journal  of  Maternal-Fetal  &  Neonatal 
MedicineOnline)  Journal,  15(5),  pp.  319–323.  doi: 
10.1080/14767050410001702195. 
Cunningham, F. G. et al. (2010) Williams Obstetrics. 23rd 
edn. McGraw-Hill Professional. 
Euliano, T.  Y. et  al.  (2013)  ‘Monitoring  uterine  activity 
during labor: A comparison of 3 methods’, American 
Journal of Obstetrics and Gynecology, 208(1), p. 66.e1-
66.e6. doi: 10.1016/j.ajog.2012.10.873. 
Fele-Zorz, G. et al. (2008) ‘A comparison of various linear 
and non-linear signal processing techniques to separate 
uterine  EMG  records  of  term  and  pre-term  delivery 
groups’, Med Biol Eng Comput, 46, pp. 911–922. doi: 
10.1007/s11517-008-0350-y. 
Fergus, P. et al. (2013) ‘Prediction of Preterm Deliveries 
from  EHG  Signals  Using  Machine  Learning’,  PLoS 
ONE, 8(10). doi: 10.1371/journal.pone.0077154. 
Filho,  O.  B.  M.,  Albuquerque,  R.  M.  and  Cecatti,  J.  G. 
(2010)  ‘A  randomized  controlled  trial  comparing 
vaginal misoprostol versus Foley catheter plus oxytocin 
for labor induction’, Acta Obstetricia et Gynecologica 
Scandinavica.  Blackwell  Publishing  Ltd,  89(8),  pp. 
1045–1052. doi: 10.3109/00016349.2010.499447. 
Garcia-Simon, R. et al. (2016) ‘Economic implications of 
labor induction’, International Journal of Gynecology 
&  Obstetrics,  133(1),  pp.  112–115.  doi: 
10.1016/j.ijgo.2015.08.022. 
Garfield, R. E. and Maner, W. L. (2007) ‘Physiology and 
electrical activity of uterine contractions’, Seminars in 
Cell & Developmental Biology, 18, pp. 289–295. doi: 
10.1016/j.semcdb.2007.05.004. 
Gilstrop, M. and Sciscione, A. (2015) ‘Induction of labor—
Pharmacology methods’, Seminars in Perinatology, 39, 
pp. 463–465. doi: 10.1053/j.semperi.2015.07.009. 
Hamilton,  B.  et  al.  (2012)  Births:  Final  data  for  2012. 
Hyattsville.  Available  at:  www.cdc.gov/ 
nchs/data/nvsr/nvsr62/nvsr62 09.pdf. 
Indraccolo,  U.,  Scutiero,  G.  and  Greco,  P.  (2016) 
‘Sonographic  Cervical  Shortening  after  Labor 
Induction is a Predictor of Vaginal Delivery’, Revista 
Brasileira  de  Ginecologia  e  Obstetrícia.  Federação 
Brasileira das Sociedades de Ginecologia e Obstetrícia, 
38(12), pp. 585–588. doi: 10.1055/s-0036-1597629. 
Leman, H., Marque, C. and Gondry, J. (1999) ‘Use of the 
electrohysterogram  signal  for  characterization  of 
contractions during pregnancy’, IEEE Transactions on 
BIOSIGNALS 2018 - 11th International Conference on Bio-inspired Systems and Signal Processing
76