
sequences  in  C.elegans.  The  novelty  of  this  work 
resides in  the fact  of  the  all helitron’s classification 
using the energy of matrix contains the coefficient of 
wavelet  (time-frequencies  presentation).  These 
energy-vector  can  characterize  each  helitrons  by 
specific  frequencies  that  have  energy  around  the 
specific frequency. 
REFERENCES 
Amin, H. U., Malik, A. S., Ahmad, R. F., Badruddin, N., 
Kamel, N., Hussain, M., & Chooi, W. T. 2015. Feature 
extraction  and  classification  for  EEG  signals  using 
wavelet  transform  and  machine  learning 
techniques. Australasian  physical  &  engineering 
sciences in medicine, 38(1), 139-149. 
Chang, C.  C., & Lin, C. J.  2011. LIBSVM: a library for 
support  vector  machines. ACM  transactions  on 
intelligent systems and technology (TIST), 2(3), 27. 
Du, C., Fefelova, N., Caronna, J., He, L., & Dooner, H. K. 
2009.  The  polychromatic  Helitron  landscape  of  the 
maize  genome. Proceedings  of the National Academy 
of Sciences, 106(47), 19916-19921. 
Du,  C.,  Caronna,  J.,  He,  L.,  &  Dooner,  H.  K.  2008. 
Computational  prediction  and  molecular  confirmation 
of  Helitron  transposons  in  the  maize  genome. Bmc 
Genomics, 9(1), 51. 
Edgar, R. C. 2004. MUSCLE: multiple sequence alignment 
with high accuracy and high throughput. Nucleic acids 
research, 32(5), 1792-1797. 
Norinder, U. 2003. Support vector machine models in drug 
design:  applications  to  drug  transport  processes  and 
QSAR  using  simplex  optimisations  and  variable 
selection. Neurocomputing, 55(1), 337-346. 
Mateos, A., Dopazo, J., Jansen, R., Tu, Y., Gerstein, M., & 
Stolovitzky,  G.  2002.  Systematic  learning  of  gene 
functional classes from DNA array expression data by 
using  multilayer  perceptrons.  In  Genome 
Research, 12(11), 1703-1715. 
Öz,  E.,  &  Kaya,  H.  2013.  Support  vector  machines  for 
quality  control  of  DNA  sequencing. Journal  of 
Inequalities and Applications, 2013(1), 85. 
Furey, T. S., Cristianini, N., Duffy, N., Bednarski, D. W., 
Schummer, M., & Haussler, D.  2000.  Support  vector 
machine classification and  validation  of  cancer tissue 
samples  using  microarray  expression  data. 
Bioinformatics, 16(10), 906-914. 
Hsu, C. W., & Lin, C. J. 2002. A comparison of methods 
for  multiclass  support  vector  machines. IEEE 
transactions on Neural Networks, 13(2), 415-425. 
Hsu,C.W.,  Chang,  C.C.  and Lin,  C.  J.  2009.  A  practical 
guide to support vector classification,”  Department of 
Computer  Science  and  Information  Engineering 
National  Taiwan  University,  Taipei,  Taiwan, 
Available: www.csie.ntu.edu.tw/ cjlin/ 
Shawe-Taylor,  J.,  Bartlett,  P.  L.,  Williamson,  R.  C.,  & 
Anthony,  M.  1998. Structural  risk  minimization  over 
data-dependent  hierarchies. IEEE  transactions  on 
Information Theory, 44(5), 1926-1940. 
Vapnik,  V.N.,  Vapnik,V.  1998. “Statistical  learning 
theory,” New York : Wiley,. 
Vapnik, V., 1995. The nature of statistical learning theory,” 
Springer Verlag New York, Inc. New York, 
Gutschoven, B., & Verlinde, P. 2000. Multi-modal identity 
verification  using  support  vector  machines  (SVM). 
In Information  Fusion,  2000.  FUSION  2000. 
Proceedings  of  the  Third  International  Conference 
on (Vol. 2, pp. THB3-3). IEEE. 
Poulter, R. T. M., & Goodwin, T. J. D. 2005. DIRS-1 and 
the  other  tyrosine  recombinase  retrotransposons. 
Cytogenetic and genome research, 110(1-4), 575-588. 
Hood,  M.  E.  2005.  Repetitive  DNA  in  the  automictic 
fungus Microbotryum violaceum. Genetica, 124(1),  1-
10. 
Kapitonov,  V.  V.,  &  Jurka,  J.  2001.  Rolling-circle 
transposons in eukaryotes. Proceedings of the National 
Academy of Sciences, 98(15), 8714-8719. 
Lai, J., Li, Y., Messing, J., & Dooner, H. K. 2005. Gene 
movement  by  Helitron  transposons contributes  to  the 
haplotype  variability  of  maize. Proceedings  of  the 
National Academy of Sciences of the United States of 
America, 102(25), 9068-9073. 
Schnable, P. S., Ware, D., Fulton, R. S., Stein, J. C., Wei, 
F., Pasternak, S., ... & Minx, P. 2009. The B73 maize 
genome: complexity, diversity, and dynamics. Science, 
326(5956), 1112-1115. 
Tempel, S. 2007. Dynamique des hélitrons dans le genome 
d'Arabidopsis  thaliana:  développement  de  nouvelles 
stratégies  d'analyse  des  éléments  transposables 
(Doctoral dissertation, Université Rennes 1). 
Sweredoski, M., DeRose-Wilson, L., & Gaut, B. S. 2008. 
A  comparative  computational  analysis  of 
nonautonomous helitron elements between  maize and 
rice. BMC genomics, 9(1), 467. 
Xiong, W., He, L., Lai, J., Dooner, H. K., & Du, C. 2014. 
HelitronScanner uncovers a large overlooked cache of 
Helitron  transposons  in  many  plant 
genomes. Proceedings  of  the  National  Academy  of 
Sciences, 111(28), 10263-10268. 
Yang,  L.,  &  Bennetzen,  J.  L.  2009.  Structure-based 
discovery  and  description  of  plant  and  animal 
Helitrons. Proceedings  of  the  National  Academy  of 
Sciences, 106(31), 12832-12837. 
Wicker, T., Sabot, F., Hua-Van, A., Bennetzen, J. L., Capy, 
P.,  Chalhoub,  B.,  ...  &  Paux,  E.  2007.  A  unified 
classification  system  for  eukaryotic  transposable 
elements. Nature Reviews Genetics, 8(12), 973-982. 
Fiser, A., Tusnady, G. E., & Simon, I. 1994. Chaos game 
representation  of  protein  structures. Journal  of 
molecular graphics, 12(4), 302-304. 
Merry, R. J. E., & Steinbuch, M. 2005. Wavelet theory and 
applications. literature  study,  Eindhoven  university  of 
technology,  Department  of  mechanical  engineering, 
Control systems technology group. 
Morgante, M., Brunner, S., Pea, G., Fengler, K., Zuccolo, 
A.,  &  Rafalski,  A.  2005.  Gene  duplication  and  exon 
shuffling  by  helitron-like  transposons  generate 
Classification of Helitron’s Types in the C.elegans Genome based on Features Extracted from Wavelet Transform and SVM Methods
133