
 “focus”  and  “context”  views  on  a  single 
visualization  display  by  partitioning  the  overall 
rendering into two regions with flexible widths. The 
focus PCP renders the data with respect to priority 
dimensions (whose number is kept small, below 10) 
so  that  the  corresponding  axes  are  widely  spaced. 
The  display  can  be  enriched  by  adding  ancillary 
visualizations  including  axes  overlays,  embedded 
parallel  coordinates,  and  scatter  plots.  The  context 
PCP  renders  the  same  data  with  respect  to  all 
remaining axes, which are tightly packed in a single 
plot  or  a  multi-level  stacked  layout.  By 
experimenting on two datasets consisting of 25 and 
130 dimensions, we have demonstrated the potential 
effectiveness  of  BPCP  in  visually  exploring 
high/ultra-high dimensional multivariate data, which 
are on a rise in today’s big data world.  
REFERENCES 
Avidan,  T.  and  Avidan,  S.  (1999).  Parallax  –  a  data 
mining  tool  based  on  parallel  coordinates. 
Computational Statistics, 14:79-90. 
Few,  S.  (2006).  Multivariate  analysis  using  parallel 
coordinates. Perceptual Edge. 
Inselberg,  A.  (2009).  Parallel  coordinates:  visual 
multidimensional  geometry  and  its  application. 
Springer, New York. 
Heinrich, J. and Weiskopf, D. (2013). State of the art of 
parallel  coordinates.  In  STAR  Proceedings  of 
Eurographics, pages 95–116. 
Siirtola, H. and Raiha, K. (2006). Interacting with parallel 
coordinates. Interacting Computers, 18:1278-1309. 
Gruendl, H., Riehmann, P., Pausch, Y., and Froehlich, B. 
(2016).  Time-series  plots  integrated  in  parallel 
coordinates  displays.  In  Eurographics/IEEE  VGTC 
Conference on Visualization, pages 321-330. 
Riehmann, P., Opolka,  J., and  Froehlich, B.  (2012). The 
product  explorer:  Decision  making  with  ease.  In 
International  Working  Conference  on  Advanced 
Visual Interfaces, pages 423-432. 
Spence R. and Apperley, M. D. (2013). A bifocal display. 
The  Encyclopedia  of  Human-Computer  Interaction. 
2
nd
 Ed., Interaction Design Foundation. 
Brodbeck, D. and Giradin, L. (2003). Design study: Using 
multiple coordinated views to analyse geo-referenced 
high-dimensional  datasets.  In  International 
Conference  on  Coordinated  and  Multiple  Views  in 
Exploratory Visualization, pages 104-111. 
Novotny,  M.  and  Hauser,  H.  (2006).  Outlier-preserving 
focus  +  context  visualization  in  parallel  coordinates. 
IEEE  Transactions  on  Visualization  and  Computer 
Graphics, 12:893-900. 
Inselberg, A. (1997). Multidimensional detective. In IEEE 
Symposium  on  Information Visualization, pages 100-
107. 
Zhou, H., Yuan, X., Qu, H., Cui, W., and Chen, B. (2008). 
Visual  clustering  in  parallel  coordinates.  Computer 
Graphics Forum, 27:1047-1054. 
Heinrich,  J.,  Stasko,  J.,  and  Weiskopf,  D.  (2012).  The 
parallel  coordinates  matrix.  In  Eurographics 
Conference on Visualization, pages 37–41. 
Lu, L. F., Huang, M. L., and Zhang, J. (2016). Two axes 
re-ordering  methods  in  parallel  coordinates  plots. 
Journal of Visual Languages & Computing, 33:3–12. 
Peltonen, J. and Lin, Z. (2017). Parallel coordinates plots 
for  neighbour  retrieval.  In  12
th
  Joint  International 
Conference on Information  Visualization Theory and 
Applications, pages 40-51. 
Yang, J., Peng, W., Ward, M. O., and Rundensteiner, E. 
A. (2003). Interactive hierarchical dimension ordering, 
spacing  and  filtering  for  exploration  of  high 
dimensional  datasets.  In  IEEE  Symposium  on 
Information Visualization, pages 105-112. 
Turkey,  C.,  Filzmoser,  P.,  and  Hauser,  H.  (2011). 
Brushing dimensions: a dual visual analysis model for 
high-dimensional  data.  IEEE  Transactions  on 
Visualization and Computer Graphics, 17:2591-2599.  
Fua, Y. H., Ward, M. O., and Rundensteiner, E. A. (1999). 
Hierarchical  parallel  coordinates  for  exploration  of 
large datasets. In IEEE Visualization, pages 43–50. 
Peng, W., Ward, M. O., and Rundensteiner, E. A. (2004). 
Clutter  reduction  in  multi-dimensional  data 
visualization  using  dimension  reordering.  IEEE 
Symposium on Information Visualization, pages 89-96. 
Jolliffe, J. (1986). Principal component analysis. Springer 
Verlag. 
Mead,  Al.  (1992).  Review  of  of  the  development  of 
multidimensional  scaling  methods.  The  Statistician, 
33:27-35.  
Von  Huhn,  R.  (1931).  A  trigonometrical  method  for 
computing  the  scales  of  statistical  charts  to  improve 
visualization.  Journal  of  the  American  Statistical 
Association, 26:319-324. 
Johansson,  J.,  Forsell,  C.,  Lind,  M.,  and  Cooper,  M. 
(2008).  Perceiving  patterns  in  parallel  coordinates: 
determining  thresholds  for  identification  of 
relationships. Information Visualization, 7:152-162.   
Huamin, Q., Xiaoru, Y., Hong, Z., Peihong, G., and He, X. 
(2009).  Scattering points in parallel coordinates. IEEE 
Transactions  on  Visualization  and  Computer 
Graphics,15:1001-1008. 
Kanjanabose, R., Rahman, A. A., and Chen, M. (2015). A 
multitask  comparative  study  on  scatter  plots  and 
parallel coordinates plots. In Eurographics Conference 
on Visualization, 34:261-270. 
Wang,  J.,  Liu,  X.,  Shen,  H.  W.,  and  Lin,  G.  (2016). 
Multiresolution  climate  ensemble  parameter  analysis 
with  nested  parallel  coordinates  plots.  IEEE 
Transactions  on  Visualization  and  Computer 
Graphics, 23:81-90. 
Sangli, S. S., Kaur, G., and Karki, B. B. (2016). Star plot 
visualization  of  ultrahigh  dimensional  multivariate 
data. In International Conference on Advances in Big 
Data Analytics, pages 91-97. 
 
Bifocal Parallel Coordinates Plot for Multivariate Data Visualization
183