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Abstract: Lambda architecture has gained high relevance for big data analytics by offering mixed and coordinated data 
processing: real time processing for fast data streams and batch processing for large workloads with high 
latency. However, concrete implementations over cloud infrastructures and cost comparisons are still not 
being sufficiently analyzed. This paper presents a cost comparison of Lambda architecture implementations 
using Software as a Service (SaaS) to support IT decision makers when streaming-analytics solutions must 
be implemented. To do that, a case study of transportation analytics is developed on three public cloud 
providers: Google Cloud Platform, Microsoft Azure, and Amazon Web Services Cloud. The evaluation is 
carried out by comparing deployment, configuration, development, and performance costs in a public-
transportation delay-monitoring case study assessing various concurrency scenarios. 

1 INTRODUCTION 

Big data analytics (BDA) in real-time can provide up-
to-the-minute insights to enterprise users, so that 
faster and better business decisions can be made. 
BDA requires the collection of huge amounts of data 
produced by multiple sources at high speed and its 
processing with low latency using analytic 
algorithms. In this context, Lambda architecture 
(Marz and Warren, 2015) has gained high relevance 
for BDA by offering mixed and coordinated data 
processing: real time processing for fast data streams 
and batch processing for large workloads with high 
latency. 

The Lambda architecture combines batch 
precomputed views and low-latency responses by 
building a series of layers which satisfy a subset of 
concerns. The batch layer stores a copy of the master 
dataset and precomputes the batch views. The batch 
layer stores an immutable, constantly growing dataset 
and computes arbitrary functions over the whole 
dataset to generate the batch views. This heavy 
workload implies high latency processing, and 

therefore the next layers compensate for this 
limitation. The speed layer compensates for the high 
latency of the batch layer by precomputing the delta 
of data not processed by the batch layer. The goal is 
to guarantee that new data are included as soon as 
needed for the user queries, thus offering speed views. 
The serving layer is a specialized distributed database 
that enables random reads on batch views. When new 
batch views are generated, the serving layer 
automatically swaps those in so that more up-to-date 
results can be queried. 

Cloud computing is an enabler for big data 
solutions because it offers infrastructure, storage, and 
processing capabilities that can be leased via pay-as-
you-go models. These capabilities can be offered in 
different delivery models which are built one upon the 
other. Infrastructure-as-a-Service (IaaS) provides a 
self-contained environment comprised of IT 
infrastructure resources. Platform-as-a-Service 
(PaaS) offers a pre-configured cloud environment 
ready for the development and deployment of 
applications. Software-as-a-Service (SaaS) enables 
customers to use high-level functional services 
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without incurring in the cost of license acquisition or 
software maintenance. This latter delivery model is 
oriented to decrease the Total Cost of Ownership and 
increase the Return on Investment. 

Previous studies have proposed concrete 
implementations of Lambda architecture (Villari et 
al., 2014; Hasani et al., 2014; Batyuk and Voityshyn, 
2016) including cloud services (Pham, 2015; Kiran et 
al., 2015; Gribaudo et al., 2017). However, concrete 
implementations of Lambda architecture over SaaS 
and cost comparison have still not been sufficiently 
analyzed. Cloud services facilitate the provisioning of 
near-infinite and elastic resources necessary for 
storing and processing stream data analytics and 
heavy batch workloads. For this reason, the public 
cloud is a natural environment to implement BDA 
solutions. 

This paper presents a cost comparison of Lambda 
architecture implementations, taking advantage of the 
SaaS delivery model to support IT decision making 
when streaming-analytics solutions must be 
implemented. To do that, a case study of 
transportation analytics is developed on three public 
cloud providers: Google Cloud Platform, Microsoft 
Azure, and Amazon Web Services (AWS) Cloud. The 
evaluation is carried out by comparing the 
deployment, configuration, development, and 
performance costs in a public-transportation delay-
monitoring case study assessing various concurrency 
scenarios. 

This paper is organized as follows: Section 2 
shows previous studies with implementations of 
Lambda architecture. Section 3 introduces the case 
study of transportation analytics. Section 4 describes 
the different implementations of Lambda architecture 
using SaaS. Section 5 summarizes the test 
methodology. Section 6 reports the results obtained. 
Section 7 presents the discussion of the results. 
Finally, Section 8 outlines the conclusions. 

2 RELATED WORK 

The following previous works have focused on 
implementations and optimizations of Lambda 
architectures deployed on IaaS and PaaS, but they 
neither tackle implementations on SaaS of different 
public vendors nor offer multi-factor cost 
comparisons to support decision-making when a 
Lambda architecture solution is instantiated. Pham 
(2015) proposes a flexibly adaptive cloud-based 
framework for BDA as a Service (BDAaaS) by 
implementing Lambda architecture for real-time 
analytics. The framework collects and analyzes data, 

implementing concrete technologies for each Lambda 
layer. These layers are deployed automatically over 
public cloud providers. Kiran et al., (2015) present an 
implementation of Lambda architecture to construct 
data processing on Amazon EC2 delivered as a 
service to minimize the cost of maintenance. Thota et 
al., (2018) present an architecture for integration to 
offer capabilities such as streaming, bulk processing, 
and data services for cloud deployment. Grulich and 
Zukunft (2017) propose a streaming processing 
architecture for car information systems and validate 
the scalability metrics on cloud infrastructure 
deployment. Similarly to previous works, 
Dissanayake and Jayasena (2017) offer an 
implementation of Lambda architecture for IoT 
analytics using AWS PaaS to address scalability, 
availability, and performance quality attributes. 

On the other hand, Gribaudo et al., (2017) present 
a modeling approach, based on multi-formalism and 
multi-solution techniques, for performance 
assessment of Lambda architecture implementations 
to optimize architecture designs. This work provides 
a user domain language approach to model and 
evaluate performance indices of Lambda architecture 
implementations regarding specific infrastructure, 
data speed, and computation parameters but tackles 
neither the software development effort nor the cloud 
service costs regarding the SaaS options provided by 
different vendors. 

3 CASE STUDY 

Travel information services deal with the provision of 
static and dynamic information about the road 
transport network prior to and during trips (ISO, 
2001). We are going to address a case study related to 
this service domain: real-time transport status 
information. Specifically, we use a service to provide 
information about trip delays within a transportation 
system. This information is generally provided by the 
ITS authority in real-time or near real-time to offer 
timely and accurate information to transport users. 
Delay monitoring in public transportation services 
requires the processing of large datasets of vehicle 
locations to be combined with low latency in order to 
report the delay times to users in near real-time. This 
makes the delay-monitoring service a typical use case 
to develop a big data solution that applies Lambda 
architecture. 

Our case study presents a proposed bus arrival 
time prediction with Lambda architecture. The 
developed architecture covers the batch layer using 
historical data with a one-day execution window, and 
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the speed layer uses real-time data with a five-minute 
execution window continually during the day. The 
algorithm in both layers calculates an expected 
average delay in five-minute windows. These 
windows are generated for each key composed of the 
route ID, stop ID, and window time. Additionally, the 
delay average is grouped by day of the week. The 
window time is defined by the groups of trip updates 
reported within five minutes. 

We take the Metro Vancouver’s regional 
transportation GTFS dataset, which is publicly 
available, and real-time trip update data (Translink 
GTFS Realtime Open API), which provides 
Vancouver’s real-time transportation data for the 
analysis. 

3.1 Translink Dataset 

The open API of Translink serves trip update data in 
GTFS Realtime (protobuffer format), and we send 
requests to collect feeds every 60 seconds. These data 
were collected during one week from December 11, 
2017 to December 17, 2017 for 16 hours every day.  

The GTFS real-time data contains just over 6,720 
trip updates with 4,631,075 protobuffer files, which 
are deserialized to JSON format. In summary, these 
JSON files comprise 211 routes and 8,447 stops, each 
pair with a delay time to the next stop. The size of the 
dataset (binary format) is 383 MB in 6,720 individual 
files.  

3.2 Steps Needed to Calculate the 
Waiting Time 

A trip update provides information in real-time about 
the trips in operation in the city of Vancouver. This 
means that the first step is to join the planned GTFS 
trips file with each trip update in GTFS Realtime. 
This step is necessary in both layers. 

In the next step, the speed layer receives a Travel 
Update with approximately 45,000 JSON updates 
every 60 seconds. The algorithm makes groups every 
five minutes (time window) with exactly five JSON 
updates. Then the speed layer assembles tuples with 
the route ID, stop ID, and their expected delay 
average. Every five minutes, the speed layer writes 
the results composed of the stop ID, route ID, week 
day, time window and average delay in the serving 
layer. Consequently, the preprocessed view with the 
real-time information calculation is ready to respond 
to users’ requests. The goal is to guarantee the 
availability of new data as soon as needed for the user 
queries, thus offering real-time views. 

Simultaneously, the batch layer job is executed at 
the end of the day to compute the whole of the stored 
raw data generating the same output (stop ID, route 
ID, week day, time window, and average delay). Each 
day, the batch layer writes the results over the serving 
layer, cumulatively recomputing historic data. This 
heavy workload implies high latency processing, and 
therefore the speed layer compensates for this 
limitation. 

Lastly, we implement and evaluate the Lambda 
architecture using SaaS with realistic and exhaustive 
tests described in the next sections. 

4 IMPLEMENTATION 

To implement a Lambda architecture solution aligned 
to our case study, we define architectural mechanisms 
for each layer. The ingestion process is implemented 
by means of an event data transfer mechanism. The 
batch layer requires a batch processing engine 
combined with a resilient distributed file system to 
store the immutable master dataset. The speed layer 
requires a streaming processing engine of low 
latency. Finally, the serving layer can be instantiated 
through a relational or column-family database 
regarding the model structure and offering low 
latency. To compare each BDA SaaS, we implement 
versions for each Lambda layer and cloud platform 
regarding the architectural decisions and the SaaS 
catalog of each cloud vendor (Amazon, Google, and 
Azure). In each layer of the Lambda architecture, we 
select the service with the highest level of abstraction 
and serverless delivery model. This selection is made 
for two main reasons: to avoid low-level 
implementation and to make the metrics comparable. 

4.1 AWS Implementation 

The AWS implementation is depicted in Figure 1. The 
speed layer uses Kinesis Data Streams to ingest GTFS 
messages and to send them to Kinesis Analytics to be 
processed in real-time. The processing outputs (speed 
views) are stored in an S3 batch bucket using an AWS 
Lambda function. In the batch layer, Kinesis Firehose 
ingests the raw data and stores it in an S3 bucket. Raw 
data is read and processed by an AWS Glue job to be 
persisted as batch views in the S3 result bucket. The 
serving layer uses Amazon Athena to perform queries 
directly in standard SQL over speed and batch views 
stored in S3 buckets. 
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Figure 1: Implementation in AWS. 

 

Figure 2: Implementation in Google Cloud. 

 

Figure 3: Implementation in Microsoft Azure. 

Table 1: Comparison metrics for layers. 

Metric 
 Layer  
Speed Batch Serving 

Performance 

Reading time  X  
Processing time X X  
Writing time  X  
Response time   X
Time vs threads   X

Development/configuration effort X X X 
Service costs X X X 
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4.2 Google Cloud Implementation 

The Google Cloud implementation employs the 
Dataflow service in both the speed and the batch layer 
and its detail is presented in Figure 2. The speed layer 
ingestion is developed by means of a topic in Cloud 
Pub/Sub which passes the GTFS messages to a 
Dataflow speed job. This job aggregates the 
calculations and stores them in Google Cloud 
BigQuery. In the batch layer, Pub/Sub service persists 
messages in the Cloud Datastore as raw data. Then, a 
batch Dataflow job reads the raw data and aggregates 
delay averages to write the batch views into 
BigQuery. BigQuery is the serving layer to persist 
and query views using SQL-like scripts. 

4.3 Azure Implementation 

For Azure implementation, represented in Figure 3, 
the speed layer uses EventHub to ingest GTFS 
messages, and the Stream Analytics service processes 
them in real-time. The processed speed views are 
stored in Cosmos DB. In the batch layer, raw data is 
persisted into Data Lake Store using a Stream 
Analytics job. The raw data is read by a Data Lake 
Analytics job which is scheduled through Data 
Factory. The Data Lake Analytics job makes the 
calculations and stores the results in Cosmos DB. The 
serving layer is built as a Cosmos DB service which 
stores the batch and speed views and offers an SQL-
like interface. 

5 TEST 

We evaluate the three implementations of the Lambda 
architecture presented in Section 4 to compare 
performance, development/configuration efforts, and 
service costs in each layer using the dataset 
introduced in Section 3.1. Table 1 summarizes the 
metrics evaluated for each layer. The metrics used to 
compare the cost of the implementations are 
calculated by layer so that architects, administrators, 
and developers can evaluate and select the best SaaS 
candidate for each layer regarding performance 
requirements, time to market, and budget. 

5.1 Performance Test 

To compare the performance for each public cloud 
provider and layer, we define metrics related to 
reading time, processing time, writing time, response 
time, and response time versus active threads. In the 
speed layer, we measure the processing time for each 

micro-batch to evaluate the processing speed offered. 
In the batch layer, we collect the reading time of raw 
data, processing time, and results writing for each 
daily execution. In the serving layer, we take the 
response time and response time versus thread 
metrics using a stress test with a ramping-up depicted 
in Figure 4 to evaluate the final user experience when 
the delay service is consumed. 

The experiment involves a simulation of the 
consumption of the GTFS dataset accelerated up to 
60 times, which implies that one GTFS feed is 
consumed each second. At the same time, the serving 
layer is assessed by an automated stress test 
implemented in JMeter which launches JDBC queries 
that simulate delay service requests made by the 
users. The request’s ramp-up reflects a real demand 
scenario depicted in Translink (2013), where there are 
time slots of low, medium, and high demand during 
the day. Hence, Figure 4 details the number of 
requests per day (one day = 16 minutes in the 60× 
simulation). The whole simulation (seven days) on 
each platform takes 112 minutes, where batch job 
execution is performed every 16 minutes and a speed 
job is performed every 5 seconds. 

5.2 Development and Configuration 

Regarding the development and configuration effort 
quantification, we track the time invested by each 
programmer to develop each layer. To have a 
comparable effort metric, we ensure that developers 
have similar technical skills. The development tasks 
include training, coding, and testing. Thus, trip update 
JSON parsing and join, filter, and aggregate 
operations in each layer (speed and batch) are 
registered in hours as ETL development. Time 
invested in script building for the serving layer (SQL-
like in most cases) is also recorded. Additionally, 
SaaS configuration tasks such as scheduling, 
parameter setting, and service provisioning are also 
timed. 

5.3 Service Costs 

Due to different SaaS pricing models for each layer, 
the economic cost can be calculated according to the 
demand for the tasks, requests, processing, storage, or 
resources. So, we sum these costs to obtain a 
cumulative cost reported by the vendor’s billing 
service for each layer. The total cost of the experiment 
(seven days) is projected to a monthly fee. 
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Figure 4: Number of threads per time slot (ramp-up). 

Table 2: Average reading time to batch layer in seconds. 

 

6 RESULTS 

The case study allows us to evaluate the performance, 
development effort, and cost of each public cloud. 
The results of this evaluation are described in this 
section. 

6.1 Performance 

The performance test of the batch layer involves the 
cumulative processing of trip update files each day. 
Approximately 1000 trip update files comprising 
700,000 JSONs were collected each day. In total, 
6,720 files and 4,631,075 JSONs were collected for 
processing. 

Before starting the processing in the batch layer, 
the raw files of trip updates are read, and for this 
reason Table 2 presents the average reading time for 
each implementation. The average reading time of 
AWS Glue in AWS S3 storage is the most stable and 
efficient, while the other batch services take 12 times 
(Google Cloud) and 18 times (Azure) longer to read 
the raw data. The average reading time of the Cloud 
Datastore service in Google Cloud has a constant 
increase as the number of trip updates increases every 
day. Finally, the average reading time of the Data 
Lake Store service in Azure has the highest increase 
until the fifth day, after which the average reading 
time decreases, which may reflect scaling of the 
service. 

After reading the files, the next step is to calculate 
the waiting time described in Section 3.2. This 

processing time is shown in Figure 5. The AWS Glue 
service that does the processing of the batch layer in 
AWS is again the most consistent and efficient, since 
the processing time is almost constant below two 
seconds in each execution, despite the increasing 
number of files. In contrast, the Google Cloud 
Dataflow service has the lowest processing 
performance with peaks almost every four seconds, 
twice the processing time of AWS. Data Lake 
Analytics in Azure is the most sensitive to the number 
of processed files, and similarly to the reading time, 
the service seems to have scaled during the fifth and 
sixth days. 
 

 

Figure 5: Average processing time for batch layer. 

Table 3: Average writing time in batch layer. 

 
 

The final step of batch processing is to write in the 
serving layer. The average writing time is shown in 
Table 3. The Amazon S3 service continues to show 
consistent behavior, offering the best performance. 
Conversely, Google BigQuery presents the worst 
average writing times, showing a decreasing trend. In 
addition, the Cosmos DB service presents 
intermediate average writing times with a slight 
increasing is observed in the last two days. 
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Figure 6: Average response time for the serving layer. 

The processing times obtained in the speed layer 
are constant on all platforms constrained to real-time 
windows, and for this reason we do not consider it 
valuable to compare them. 

The metric of serving layer performance in 
respect of response time is shown in Figure 6. It is 
worthy of note that at the beginning of the stress test, 
all services start with the highest latency, which is 
especially noticeable in the Google serving layer, but 
when the test moves forward, the latency is reduced. 
Cosmos DB shows the lowest average response 
times, followed by AWS Athena and Google 
BigQuery respectively. 

6.2 Development and Configuration 

The effort required for learning, development, 
configuration, and deployment was measured for each 
developer. Table 4 shows that the total number of 
development hours is highest for AWS, followed by 
Azure and Google respectively. 

Table 4: Development time of Lambda architecture on each 
public cloud. 

 Google Cloud AWS Azure 
Speed layer 26.1 42.8 37.4
Batch layer 31.6 31.5 39.7

Serving 
layer 

16.7 26.2 8.2 

Total 
(hours) 

74.4 100.5 85.3 

Table 5: Infrastructure monthly costs (USD). 

 
 

Google Dataflow implementation requires the 
lowest development time in the whole 
implementation. Detailing the development effort in 
the speed layer, the greatest effort is required for the 

AWS Kinesis service. Google Dataflow 
implementation seems to require the lowest 
development time, probably due to its unified 
programming model. In the batch layer, 
implementation of the Data Lake Analytics service 
requires the greatest effort, while the other cloud 
services show similar time investments. Finally, in 
the serving layer, the AWS AthenaS3 integration 
requires the greatest time effort, while Azure Cosmos 
DB requires the lowest development time. 

6.3 Service Cost 

Each implementation of the Lambda architecture is 
deployed in different public cloud providers. We 
define and calculate the costs required to replicate a 
similar case study with data similar to Vancouver’s 
transportation system and operate the system for four 
weeks. As a result, Table 5 presents a summary of the 
monthly fees generated by each provider during the 
simulation. The highest monthly cost is generated by 
Azure and is specifically due to the high cost of the 
Cosmos DB service. Compared to the other 
infrastructures, AWS Glue has the highest individual 
costs in the batch layer, while Kinesis has the highest 
costs in the speed layer. Google Cloud is the least 
expensive provider in all layers, with a remarkable 
difference. Finally, regarding the learning curve, the 
Google Cloud free tier allows an inexpensive proof of 
concept with these SaaSs compared to the other 
vendors’ free tiers. 

7 DISCUSSION 

This document presents a comparison of the costs of 
development and deployment for the same case study 
over Lambda architecture using three different public 
cloud providers (Google Cloud, Microsoft Azure, and 
Amazon Web Services) with the main goal of 
identifying how different public cloud providers with 
the same architecture deployment can affect the 
infrastructure cost of running and performance with 
concurrent users. In order to obtain valid results, we 
implemented three versions of the Lambda 
architecture and deployed each one using a different 
public cloud provider. 

As a result of the development and testing process 
of the three implementations deployed, we were able 
to understand the challenges that must be overcome 
to use the Lambda architecture. 
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8 CONCLUSION 

This work presented Lambda architecture 
implementations for different public cloud vendors. 
Also, this research offered a comparison of such 
implementations to support decision makers when 
they need to select specific vendors’ SaaSs in the 
context of BDA. Based on the results obtained, we 
recommend the most suitable SaaS for each layer 
depending on the criteria selected. 

In terms of performance, AWS obtained the best 
metrics in the batch and speed layers. In the batch 
layer, AWS showed the best performance in terms of 
reading, processing, and writing time, whereas 
Google Cloud seems to be affected by increasing data 
size. Focusing on serving layer performance, Azure 
presented a constant and efficient behavior compared 
to other competitors. 

Regarding the time-to-market, AWS required 
more man-hours, especially in the speed and serving 
layers. Azure had the fastest development in the 
serving layer, but batch layer implementations 
required more effort because they implied the 
development and integration of Data Lake Store, 
Stream Analytics, Data Factory, and Data Lake 
Analytics services. Google Cloud development was 
the fastest, which could be due to the unified 
programming model for batch and speed processing 
offered by Google Dataflow. 

In terms of the cost of services, Azure was the 
most expensive provider in the serving layer, whereas 
AWS consumed more credits in the serving layer due 
to the Cosmos DB service. In contrast, Google Cloud 
presented the lowest price in all layers and offers the 
widest free tier to initiate the training. 

In summary, when performance is a strong 
concern, despite the high cost, AWS (in the batch and 
speed layers) is the best choice, and Azure (in the 
serving layer) should be selected to obtain the best 
response times. If the time-to-market guides the SaaS 
selection, Google Cloud is recommended although 
the performance could be affected. Finally, if service 
pricing is an important constraint, Google Cloud 
again offers the best choice by a factor of 1/4. 
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