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Abstract: Robust spot detection in microscopy image analysis serves as a critical prerequisite in many biomedical 

applications. Various approaches that automatically detect spots have been proposed to improve the analysis 

of biological images. In this paper, we propose an approach based on Convolutional Neural Network (conv-

net) that automatically detects spots using sliding-window approach. In this framework, a supervised CNN 

is trained to identify spots in image patches. Then, a sliding window is applied on testing images containing 

multiple spots where each window is sent to a CNN classifier to check if it contains a spot or not. This gives 

results for multiple windows which are then post-processed to remove overlaps by overlap suppression. The 

proposed approach was compared to two other popular conv-nets namely, GoogleNet and AlexNet using 

two types of synthetic images. The experimental results indicate that the proposed methodology provides 

fast spot detection with precision, recall and F_score values that are comparable with the other state-of-the-

art pre-trained conv-nets methods. This demonstrates that, rather than training a conv-net from scratch, fine-

tuned pre-trained conv-net models can be used for the task of spot detection. 

1 INTRODUCTION 

Object recognition in images has been a major 

research area in computer vision that arises in many 

real-world applications, such as surveillance (Varga 

& Szirányi, 2016), robotics (Wang, et al., 2016), 

biology (Li, et al., 2014) and etc. The main goals of 

this area are: Firstly, determining what kinds of 

objects are present in the image (classification) and, 

secondly, the location of these objects in the image 

(localization). Knowing which objects are present in 

a given image, computing their locations should be 

easier; alternatively, knowing where to look, 

recognizing the objects should be easier. In other 

words, it is important to think of these two tasks 

jointly. A lot of existing state-of-the-art object 

classification methods does not compute the object 

location information.  

In this work, we focus on detection of spots in 

microscopy images, as shown in Figure 1, but the 

methodology can be applied in other applications. 

The ability to accurately detect spots is of significant 

interests for biomedical researchers as it plays a 

significant step for further analysis. A Number of 

procedures  in   biology  and  medicine  require  spot  

 

Figure 1: A sample of real fluorescence image with bright 

particles obtained using confocal microscopy. 

detection and counting, for example, an individual’s 

health can be deduced based on the number of red 

and white blood cells. Spot detection is interested in 

finding all instances of spots in a given image. There 

exist several challenges faced by spot detection. 

Among them are noise and inhomogeneity which 

exist in the background. Besides all these challenges 

a lot of applications in bioimage analysis such as 

spot tracking (Genovesio, et al., 2006), require high 
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performance and reliable detection results which 

increases the need for efficiency.  

Over the past years, researchers have developed 

various methods for the detection of spots in 

microscopy images, examples include Wavelets 

(Olivo-Marin, 2002), Mathematical morphology 

(Kimori, et al., 2010). A detailed review of some of 

these methods can be found in (Smal, et al., 2010). 

Smal et al. (Smal, et al., 2010) categorized spot 

detection methods into ‘supervised’ and 

‘unsupervised’ methods.  Supervised methods are 

machine learning methods which require ground 

truth and labeled data for training. Examples of these 

methods include Adaptive boosting, Fisher 

discriminant analysis. Smal et al. (Smal, et al., 2010) 

claimed that these techniques have better detection 

performance in the image with low signal-to-noise 

ratio (SNR). Unsupervised methods refer to methods 

which do not require training. Recent development 

in machine learning, namely deep learning has 

demonstrated remarkable performance within the 

task of image classification.  

The convolutional neural network (conv-net) is 

one of the popular and effective deep learning 

techniques which based on the ImageNet 

classification completion which took place 2012, 

managed to bring down the error rate by half on the 

classification problem. According to He et al. (He, et 

al., 2015) a well-trained deep conv-net architecture 

can famously perform better than humans in 

identifying objects in images.  The conv-nets have 

since been adopted to various applications in 

computer vision community (Noh, et al., 2015) and 

medical image analysis (Tajbakhsh, et al., 2016). 

Several different conv-nets architectures have since 

been developed since 2012, AlexNet (Krizhevsky, et 

al., 2012), VGGNet (Simonyan & Zisserman, 2014), 

ResNet (He, et al., 2015) and GoogLeNet (Szegedy, 

et al., 2015) among others.  Despite the range of 

their applications in different fields, conv-nets have 

only introduced lately to analyze biological data, and 

recent works indicate that conv-nets have significant 

potential in addressing the needs of a biologist in 

analyzing data (Van Valen, et al., 2016).  

To our knowledge, there exist no conv-net 

architecture for the detection of spots in microscopy 

images. As such this work introduces an approach 

for the detection of spots based on conv-net and a 

sliding window approach. The sliding window is 

based on the idea of sliding a box around an image 

and classify each image crop inside a box (contains a 

spot or not).  

This paper is organized as follows: Section 2 

describes the methodology used in the study, while 

Section 3 presents the results and finally, Section 4 

concludes the paper. 

2 MATERIAL AND METHOD 

2.1 Methodology 

2.1.1 Convolutional Neural Network 
(Conv-Net) 

A convolutional neural network (conv-net) ℎ is a 

composition of sequence of 𝐿 layers (ℎ1……ℎ𝐿) that 

maps an input vector 𝑥 to an output vector 𝑦, i.e., 

       𝑦 = 𝑓(𝑥; 𝑤1, … , 𝑤𝐿) 

= ℎ𝐿(∙ ; 𝑤𝐿)  ∘  ℎ𝐿−1(∙ ; 𝑤𝐿−1)  ∘ ∙∙∙ 

∘  ℎ2(∙ ; 𝑤2)  ∘  ℎ1(𝑥 ; 𝑤1) 

(1) 

where 𝑤𝑙 is the weight and bias vector for the 𝑙𝑡ℎ 

layer ℎ𝑙 and ℎ𝑙 is determined to perform one of the 

following: a) convolution with a bank of kernels; b) 

spatial pooling; and c) non-linear activation. For any 

given 𝑁 training datasets {(𝑥𝑖 , 𝑦𝑖)}𝑖=1
𝑁 , we can 

estimate the weights,  𝑤1, … , 𝑤𝐿 by solving the 

optimization problem: 

augmax
𝑤1,…,𝑤𝐿

1

𝑁
∑ ℓ (𝑓(𝑥𝑖; 𝑤1, … , 𝑤𝐿))

𝑁

𝑖=1

 (2) 

Where ℓ is defined as the loss function. The 

numerical optimization of equation (2) is often 

performed via backpropagation and stochastic 

gradient descent methods (Ruder, 2017).  

2.1.2 Problem Formulation 

Given a set of labeled training images, grayscale 

image patches defined as 𝐼𝑖 ∈ 𝑅𝑤×ℎ×3, for 𝑖 in range 

1 to 𝑁 with dimensionality 𝑤 × ℎ × 3 for each 

image patch. The idea is to train a conv-net to 

predict if patch, 𝐼𝑖 contains a spot or not. Image 

patches with a full spot contained in the image are 

labelled as positive, otherwise negative.  

2.1.3 Proposed Convnet 

Generally, conv-nets include some of the following 

types of layers:  

a) Convolution layers, these layers are the 

basis of the conv-net architecture and 

perform the main computations of the 

network including training and firing of 
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neurons. They work by convolving a kernel 

of given size across an input image and 

compute the response function over at each 

location of the filter.  

b)  Pooling or down-sampling layers. These 

layers are usually put after each conv layer 

and reduce the size of the input image for 

the next conv layer.  It works by sliding a 

window and takes the maximum value from 

the values within a window at a given 

location.  

c) Fully connected layers: These layers have 

all connection from all neurons in the 

previous layer to all output. The main 

purpose of the fully connected layer is to 

use features form convolutional and 

pooling layers for classification of the input 

image to various classes. They are typically 

used as the last layer in a conv-net, with the 

output having one element per class label. 

Given the above building blocks, we propose conv-

net architecture for spot detection, named detectSpot 

as shown in Table 1. The proposed conv-net consists 

of 5 layers (3 convolution layers and 2 fully 

connected layers) with learnable weights. We 

employ a Rectified Liner Unit (ReLu) (Nair & 

Hinton, 2010) activation function for the first four 

layers and a softmax for the last layer.  

We apply dropout with probability of 0.5 for the 

first two fully connected layers (FC). The weights 

were initialized using truncated random normal. 

Cross-entropy loss was minimized using Adam 

optimization with the initial learning rate of 0.001.  

Table 1: Proposed conv-net architecture. 

Layer 
Kernel size,  

stride 

Output 

 𝑤 × ℎ × 𝑐 

Input 

Conv 

ReLu 

Max-Pool 

− 

9 × 9, 1 

 

2 × 2, 1 

29 × 29 × 3 

21 × 21 × 32 

21 × 21 × 32 

20 × 20 × 32 

Conv 

ReLU 

Max-Pool 

7 × 7, 1 

 

2 × 2,1 

14 × 14 × 64 

14 × 14 × 64 

13 × 13 × 64 

Conv 

ReLu 

Max-Pool 

5 × 5, 1 

 

2 × 2, 1 

9 × 9 × 80 

9 × 9 × 80 

7 × 7 × 80 

FC 

ReLu+Dropout 
− 

− 

128 

128 

FC 

ReLu+Dropout 
− 

− 

128 

128 

FC 

Softmax 
− 

− 

2 

2 

2.1.4 Sliding-Window 

The procedure adopted for detecting all spots 

positions in an image is based on sliding-window 

technique. Sliding-window is a technique of sliding 

a rectangular window across an image from top to 

bottom and left to right as illustrated by red and 

green rectangles in Figure 2. This is done in order to 

analyze subpart of the image and extract some 

information.  

 

Figure 2: Illustration of sliding-window approach. 

2.1.5 Dataset 

Synthetic image patches sampled from a synthetic 

image of size 512 × 512 were used for training a 

proposed conv-net. Each image patch was of size 

29 × 29 pixels. Positive patches were identified as 

those which contain a center of a spot and negative 

patches are those which do not contain a spot. We 

noted that the number of negative patches is usually 

disproportionally large compared to the number of 

positive patches. This was caused by the fact that 

most of each image does not contain spots. Two 

measures were then proposed to make training and 

validation set more balanced. Firstly, we randomly 

discarded negative patches so that the is 50* the 

number of positive patches.  Secondly, we rotated 

each positive patch giving 4 extra positive patches. 

A total of 21300 patches created from images with a 

signal to noise ratio (SNR) of (20, 10, 5, 2, 1). A 

total of 21300 The 21300 image patches were 

divided as follows: 

• 80% for training 

• 20% evaluation  

 

Spot Detection in Microscopy Images using Convolutional Neural Network with Sliding-Window Approach

69



2.1.6 Implementation and Training 

To implement and tune a proposed conv-net we used 

TFLearn (Damien, 2016). TFLearn is a tensorflow 

(Abadi, et al., 2015) wrapper which allows simple 

implementation and training of deep learning 

models. The network was learned using Adam 

(Kingma & Ba, 2015) based optimization algorithm. 

Training was carried out on a Linux machine with 

16GB RAM  and Nvidia GTX680 running TFLearn 

(v0.3) and tensorflow (v1.3.0) with. 

2.2 Detection of Spots in Test Images 

Once the proposed conv-net architecture, deepSpot 

is trained it is able to classify an image patch as 

containing a spot or not. Figure 3 illustrates the 

entire pipeline for the detection of spots. In order to 

detect all spots in a complete image, we scan 

through an image using a window of size (𝑤 × ℎ) 

which is then passed onto a deepSpot and select 

those with the highest probability of containing  

spot. At each iteration,  the extracted sub-window  is 

 

Figure 3: The proposed architecture for spot detection in microscopy images. 
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Figure 4: Examples of synthetic images used for testing with approximately 50 spots per image. (a) Type A,  and (b-c)  

Type B. 

passed onto a classifier to compute a score S, which 

defines whether a spot is contained in the sub-

window. Then, if S is bigger than the set threshold T, 

the correspond-ding sub-window is considered to 

contain spot. 

Then, the sub-windows classified as containing 

spots are subject to further processing to get spot 

centroid (𝑥, 𝑦) and bounding circles indicating the 

location of spots in an image. There are two main 

important parameters for our proposed sliding-

window approach, window-size (𝑤 × ℎ) and stride. 

These parameters influence both speed and detection 

rate.  This approach can only detect spots with fixed 

size but it can be extended to spots with different 

sizes by introducing image pyramids. 

Using a small stride, e.g. stride = 1, will result in 

multiple detections of the same spot at slightly 

different positions. To overcome this issue, we 

group all nearby detections so that every spot is 

detected once by using overlap suppression (OS) 

approach. The OS method works by grouping all 

overlapping detections and suppresses the ones with 

lowest scores. This will result in discarding all 

overlapping detections. 

2.2.1 Using Pre-trained Models 

2.2.1.1  Pre-trained Models 

The proposed detectSpot model was compared to 

two other state-of-the-art conv-nets models, namely, 

AlexNet and GoogleNet.  

AlexNet: This conv-net was developed by 

Krizhevsky et al. (Krizhevsky, et al., 2012) and 

successfully applied to large-scale image recognition 

and won the ImageNet ILSVRC-2012 challenge. 

The model consisted of 8 layers (5 convolutional 

layers and three fully connected layers).  

GoogleNet: This conv-net was a winner for 

ImageNet ILSVRC-2014 proposed by Szegedy et al. 

(Szegedy, et al., 2015) from Google. This network 

has 12X fewer parameters compared to AlexNet yet 

deeper (22 layers). The main contribution of 

GoogleNet is the introduction of inception module.  

2.3 Synthetic Datasets and Evaluation 
Criteria 

2.3.1 Synthetic Test Datasets 

We generated two types of synthetic datasets (Type 

A and Type  B) containing spots using a framework 

proposed in (Mabaso, et al., 2016) in order to 

demonstrate the effectiveness of the proposed 

detectSpot model as shown in Figure 4. Each 

synthetic image contains 50 spots cluttered on the 

background of size 256 × 256 pixels. The dataset 

was corrupted by white noise. The following signal 

to noise ratios (SNR) levels was explored {10, 8, 6, 

4, 2, 1} where the spot intensity was 20 gray levels. 

The signal to noise ratio is defined as of spot 

intensity, 𝑆𝑚𝑎𝑥, divided by the noise standard 

deviation, 𝜎𝑛𝑜𝑖𝑠𝑒,  

                             𝑆𝑁𝑅 =
𝑆𝑚𝑎𝑥

𝜎𝑛𝑜𝑖𝑠𝑒
                            (1) 

The spot positions were randomized using Icy-

plugin (Chenouard, 2015) to mimic the kinds of 

properties in real microscopy images. MATLAB 

was used to add spots and the OMERO.matlab-5.2.6 

toolbox (Anon., 2016) was used to read and save 

images. 

2.3.2 Evaluation Criteria 

Three state-of-the-art architecture The criteria used 

for evaluation is based on computing Precision and 

Recall. TP, FP, and FN. The precision, recall, and  

𝐹_𝑠𝑐𝑜𝑟𝑒 is three important measures which are 

reported in machine learning research in determining 
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Figure 5: F_score  vs SNR curves for all three conv-nets methods applied to two kinds of synthetic images (a) Synthetic 

type A, and (b-c) Synthetic type B. 

the performance of the classifier. Precision and 

recall are defined in terms of a number of true 

positives (TP), false positives (FP) and false 

negatives (FN): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(relevant spots detected) 

                                   (3) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (spots detected)        (4) 

 

𝐹_𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
 (5) 

A good detection method should have the value of 

𝐹𝑠𝑐𝑜𝑟𝑒  approaching one. 

3 RESULTS 

The trained conv-nets models were each applied to 

two types of synthetic images described in Section 

2.3.1 as shown in Figure 4 with a signal-to-noise 

ratio (SNR) in range {10, 8, 6, 4, 2, 1}. Table 2 - 

Table 4 indicates the results for all three conv-nets, 

detectSpot, GoogleNet and AlexNet for each of the 

test sets. The results were averaged for all SNR’s. 

The performance of each method measured using 

precision, recall, and F_score. The fair comparison 

was achieved by re-training three other conv-nets on 

the same datasets. Table 2 indicates that in terms of  

Table 2: Evaluation metrics calculated on sythetic images 

for three classifiers. 

Model Precision Recall 𝐹_𝑠𝑐𝑜𝑟𝑒 

GoogleNet 0.833 0.751 0.784 

AlexNet 0.842 0.703 0.758 

detectSpot 0.836 0.740 0.782 

Table 3: Evaluation metrics calculated on realistic 

synthetic data. Background 1. 

Method Precision Recall 𝐹_𝑠𝑐𝑜𝑟𝑒 

GoogleNet 0.717 0.585 0.633 

AlexNet 0.443 0.365 0.397 

detectSpot 0.803 0.614 0.675 

Table 4: Evaluation metrics calculated on realistic 

synthetic data. Background 2. 

Model Precision Recall 𝐹_𝑠𝑐𝑜𝑟𝑒 

GoogleNet 0.733 0.699 0.708 

AlexNet 0.567 0.476 0.502 

detectSpot 0.780 0.675 0.721 

average 𝐹_𝑠𝑐𝑜𝑟𝑒 values, the difference in 
performance for GoogleNet  and  deepSpot  is  small 
compared to AlexNet method. The recall rates are 
higher for GoogleNet in Table 2 and Table 4. This 
indicates that the method was able to correctly detect 
true spots compared to other methods while AlexNet 
method has a higher precision. Higher precision 
indicate that the method detected less false spots in 
comparison to others. However, it shows  in  Table 3  
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Figure 6: Results of applying the proposed conv-nets methods on a synthetic image data.  Detected spots by each method 

are showed in red circles.(a) Original synthetic image. (b) Spots detected by our approach, detectSpot. (c) Detected spots 

using using GoogleNet. (d) Detected spots with AlexNet.  

and Table 4 that GoogleNet and AlexNet reported 

low values for precision compared to detectSpot. 

Fig. 5 shows the behavior of each method at all 

different signal-to-noise ratios. It can be noted from 

the figure that the performance of GoogleNet and 

detectSpot is comparable similar for Fig. 5 (a) at 

SNR = 10, 8, 2, 4 while AlexNet has higher  

𝐹_𝑠𝑐𝑜𝑟𝑒  at SNR = 1 on Type A images and drops 

on Type B images. In Type B synthetic images as 

shown in Figure 5(b-c) it indicates that has slightly 

higher values for all SNRs. However, the difference 

in performance of detectSpot and GoogleNet is 

relatively small.   

Figure 6 illustrate the performance of each 

method on Type A synthetic images with SNR = 10.  

4 CONCLUSIONS 

Spot detection is an important step towards the 

analysis of microscopy images. Over the years, 

different approaches have been developed that on 

segmentation to perform spot detection.  

In this study, we have presented an automated 

approach for the detection and counting of spots in 

microscopy images, termed detectSpot. The 

proposed approach is based on a convolutional 

neural network with a sliding-window based 

approach to detect multiple spots in images. The 

comparative experiments demonstrated that the 

GoogleNet and detectSpot methods achieved 

comparable performance compared to the AlexNet 

method. We also have shown that rather training a 

convnet from scratch, knowledge transfer from 

natural images to microscopy images is possible. A 

fine-tuned pre-trained conv-net can give results 

which are comparable to fully trained conv-net.  
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