
A Framework for Web Application Integrity

Pedro Fortuna1, Nuno Pereira2 and Ismail Butun3,4
1Jscrambler, Rua Alfredo Allen, 455, 4200-135 Porto, Portugal

2DEI/ISEP/IPP, Department of Computer Engineering, Polytechnic Institute of Porto, Porto, Portugal
3Department of Computer Engineering, Abdullah Gul University, Kayseri, Turkey

4Department of Information Systems and Technology (IST), Mid Sweden University, Sundsvall, Sweden

Keywords: Web Application, Application Security, Obfuscation, Execution Integrity, Data Integrity.

Abstract: Due to their universal accessibility, interactivity and scaling ease, Web applications relying on client-side

code execution are currently the most common form of delivering applications and it is likely that they will

continue to enter into less common realms such as IoT-based applications. We reason that modern Web

applications should be able to exhibit advanced security protection mechanisms and review the research

literature that points to useful partial solutions. Then, we propose a framework to support such characteristics

and the features needed to implement them, providing a roadmap for a comprehensive solution to support

Web application integrity.

1 INTRODUCTION

Web applications had a significant evolution in the

last decade. They went from applications with very

little interactivity, where the user would explicitly

submit each request to the server and wait for the

response, to the exceptionally interactive applications

of today, which rival with native applications. In large

part, this evolution is due to a model based on the

execution of Web application code on the browser.

Besides the interactivity that executing code on the

client’s browser allows, it also enables Web

applications to scale more easily.

Web applications that follow the browser

execution model are perhaps the most common form

of delivering software nowadays. A natural desire to

have uniform application delivery and development

is leading to the appearance of the Web application

model based on client-side code execution in many

different areas and devices. Web applications

however still face serious security challenges, and

client-side code execution presents particular

difficulties that are not trivial to overcome. When the

code executes on the client, measures implemented

on the server to protect the application against certain

types of attacks are of little or no use (Nava and

Lindsay, 2009), as the data flow of attacks frequently

does not involve the server. Threats to client-side

code execution can arise from, for example, malicious

browser extensions (Kapravelos et al., 2014), or third-

party code included by the Web application (a

common practice related to revenue models based on

advertisement networks), which create trust relation-

ships that attackers can exploit (Nikiforakis et al.,

2012). Section 4 discusses these and other threats

more systematically.

While client-side Web application protection is

not a new research theme, we propose two important

directions: (i) a comprehensive framework providing

a level of protection that is not possible with partial

solutions (which we will review in Section 5), and (ii)

include in the framework features for self-protection,

self-healing and data integrity. Another important

feature is that our framework relies on protections

being delivered with the application code. This

facilitates the delivery of up-to-date protection

without assuming a particular execution environment

other than a standard Web application execution

environment.

1.1 Organization

In the following section (Section 2), we will start by

developing further why we think Web applications

are entering new realms of IoT-based applications.

This motivates the need for Web applications that

provide advanced security guarantees (self-healing,

self-protection and data integrity). Next, in Section 3,

Fortuna, P., Pereira, N. and Butun, I.
A Framework for Web Application Integrity.
DOI: 10.5220/0006720204870493
In Proceedings of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018), pages 487-493
ISBN: 978-989-758-282-0
Copyright © 2018 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

487

Figure 1: Techniques Towards Self-healing and Self-protecting Applications.

we will provide an overview of the research literature

concerning self-healing, self-protection and data

integrity. Section 4 will present the threats against

Web applications with client-side code execution and

formalize our threat model. Section 5 introduces our

framework for Web Application Integrity and finally,

Section 6 provides conclusions.

2 WEB APPLICATIONS

EVERYWHERE

In this section, we will present several examples that

support Web applications are going beyond

traditional scenarios. Not only we can find today

many devices and platforms that support this type of

applications, but also there is an increasing trend to

develop them for different areas of everyday life.

Traditionally, embedded systems were rather

closed to the outside world, having very limited

networking options. However, this is increasingly not

the case. Most embedded systems today can be

globally connected using the Internet Protocol (IP)

standard, and take part of what became known as the

Internet of Things (IoT). Developers of systems for

the IoT soon started employing the same standards

used to develop Web applications, giving birth to yet

a new term: the Web of Things (WoT) (Atzori and

Morabito, 2010). By developing WoT applications,

developers tap on the already available protocols,

libraries (e.g. HTTP, Websockets, JSON), the large

amount of trained developers, and are also able to

benefit from the architectural advantages of the Web

application model, such as scalability and ease of

update which is important problem of today’s IoT

(Schneier, B., 2014).

Javascript plays a central role in the development

of WoT applications. While traditionally its adoption

in embedded devices was dismissed due to its

increased requirements on computing resources, we

can observe that many platforms enabling developers

to create WoT applications have appeared recently

(e.g. (“The Tessel Board,” 2017)).

A testament to the advantages of using existing

protocols for the WoT is also the amount of Web

application development tools for this type of devices

that appeared very quickly. The Cyclon.js (Cylon.js,

2017) is a JavaScript framework for robotics and

WoT applications, currently supporting 43 different

platforms. IoT.js (IoT.js, 2017) is a framework for

application development, based on JerryScript, a

lightweight JavaScript engine, both open sourced by

Samsung. Pi.js (Pi.js, 2017), is a cloud-based

platform that supports writing JavaScript applications

for the Raspberry Pi. These are just a few illustrating

examples of the plethora of available tools for WoT

application development. Naturally, along with these

efforts, we can see the development of many

emerging application domains from wearables, home

automation, manufacturing, building management,

and many other domains (Raggett, 2015).

3 RELATED WORK

We will now present an overview of techniques that

can be relevant for developing self-healing and self-

protecting Web applications. We have three main

classes of techniques: protection, detection and

healing, as depicted in Figure 1. This is not an

extensive review of all existing techniques, but rather

an overview of the more relevant techniques in the

context of our work.

3.1 Protection

Code Obfuscation and Encryption: code obfusca-

tion is the process of transforming an original source

Self-healing	and	Self-
protecting	Web	applications

Protection

Obfuscation	
and	Encryption

Redundancy	
and	Diversity

Isolation

Detection

Monitoring	
behaviour

Execution	
paths

Integrity	
Checks

Healing

Failure	plans

Redundancy	
and	Voting

Escalation	
and	Challenge

Code	guards

Whitebox
cryptography

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

488

code into a form that is much harder to understand

and to debug, and assuring at the same time that the

transformed code maintains the original functionality

intact. While obfuscation, as a security approach, is

generally not considered a strong and proven defence

as encryption. However, recent work (Garg et al.,

2013) established that obfuscation could theoretically

be as secure as encryption in some applications, and

this is an important development. Code obfuscation

can also be combined with code encryption or code

encoding techniques to make the resulting code more

difficult to tamper with.

Redundancy and Diversity: pertains to techniques

that use redundant program instances to force

adversaries to manipulate more than one instance to

be successful (Cox et al., 2006). Techniques that try

to remove some of the predictability of the program

execution and location of code and data as a barrier to

program manipulation (Larsen et al., 2014). An

important example is code polymorphism, which

aims to defeat automated tampering attacks by

frequently changing the aspect of the code.

Isolation: isolation is a fundamental technique in

modern operating systems. This technique is useful,

for example, to encapsulate application modules that

need different sets of privileges, and are a way to

delineate trust boundaries.

Code Guards: is a technique that consists in

spreading multiple checks throughout the code,

usually benefiting from code obfuscation. These

checks enforce some restriction and may also defend

themselves mutually (Chang et al., 2001).

White-box Cryptography: is a technique for

protecting cryptographic code deployed to

uncontrolled environments or devices (Chow et al.,

2002). The protection is achieved by hiding the key

using mathematical operations.

3.2 Detection

Some self-healing and self-protecting capabilities are

triggered by the detection of some threat. In order to

perform detection several techniques can be

distinguished.

Monitoring Behaviour: the execution of the

application can be constantly monitored by an

external module (for example, the operating system

or the browser in the case of Web applications), and

this execution can be compared against a model of the

normal execution of the application. This model can,

for example, be a description of the expected

interactions between system resources (Huang et al.,

2008). There are also examples of building execution

models using machine-learning techniques that

enable the classification of malicious web

applications (Borgolte et al., 2013).

Execution Paths: the execution path of an

application can be an instance of monitoring

behaviour by an external module, or the execution

path can be controlled by inserting code checks into

the application itself, to ensure that the code

execution path is legitimate. One example of this

technique is the Control Flow Integrity (Gekas et al.,

2014) employed to protect native applications.

Integrity Checks: aim to detect if the application has

been tampered, e.g. (Li et al., 2009). Integrity checks

can be built into the code or done remotely, but in

both cases, they usually rely on strong assumptions

about the execution of the verification code, usually

employing self-check-summing techniques. One

important area is data integrity, where it is often

assumed that secure communication channels can

alone provide adequate guarantees. However, there

are threats to web applications that can bypass secure

channels (our threat model in Section 4 includes such

scenarios), and several work approached this problem

with both client-side and server-side solutions

(Hallgren et al., 2013), (Karapanos et al., 2016).

3.3 Healing

In regard to the mechanisms to recover from attacks,

we start by noting that many protection mechanisms

are designed to cause the application to fail

irrecoverably in order to stop an attack (e.g. (Oishi

and Matsumoto, 2011)). While this approach is

suiting for many applications, it is not an option for

safety-critical applications.

Failure Plans: applications can be designed with

handlers for expected security exceptions, and,

instead to irrecoverable failure, these handlers may

attempt to get the application back to a safe state.

Theory in development and analysis of software

safety plans is an extensive area, with many previous

useful results (Ravikumar and Subramaniam, 2016).

Redundancy and Voting: Redundancy coupled with

a mechanism to decide on the correct output (such as

voting) is a well-known mechanism for healing and

recovery (Latif-Shabgahi et al., 2004).

Escalation and Challenge: security escalation by

triggering other defences or by presenting a challenge

that only a legitimate user will be able to pass is also

a widely used technique.

A Framework for Web Application Integrity

489

Figure 2: Threat Model and Trust Boundary.

4 THREAT MODEL

We assume the hostile host model, widely used in

previous work on tamper-resistant software (Collberg

and Thomborson, 2002). The attacker is capable of

inspecting, tamper or inject code, to steal sensitive

information that can be used in a broader scale attack.

This is also an attack on the user’s privacy (provided

that the application manipulates or receives user

data). The attacker can also apply deception

techniques by changing the code to manipulate the

messages that are presented to the user of the

application.

Figure 2 depicts our threat model. The attacker

can employ debugging tools, malicious browser

extensions, Man-in-the-Browser Trojans (other than

browser extensions, e.g. API hooking or malicious

JavaScript), or can compromise third-party code

included in the application (from, e.g. advertisement

networks). These tools can allow the attacker to

analyse, manipulate or inject code, and also

manipulate the webpage content and its object-

oriented representation – the Document Object Model

(DOM). Our main goal is then to enforce the web

application trust boundary protecting the web

application execution from malicious manipulation

on the browser platform.

5 WEB APPLICATION

INTEGRITY

In order to enforce the Web Application trust

boundary depicted in Figure 2, we need to protect the

application execution from other code and plugins

running on the Browser. Additionally, we also need

to ensure the integrity of the Web application code,

the DOM and application data. One important

characteristic we wanted to enforce in our solution is

that all protection mechanisms are delivered together

with the Web Application code and do not rely in any

particular execution environment (such as a dedicated

Browser plugin). Only a standard Browser with a

modern Javascript execution environment is required.

This also has the very important advantage of

enabling easier updates to the protection mechanisms.

An overview of the proposed solution is presented

in Figure 3. The solution is inspired by techniques

reviewed in Section 3, and relies on code

transformations made to the application code on the

server side so that it includes the protection

framework. The protection framework will then be

delivered along with the Web application and

executed on the client. The code transformations

performed also include performing integrity checks

on the data exchanged. We will now briefly discuss

the two main mechanisms of our framework: (i) code

execution protection and (ii) integrity protection.

5.1 Code Execution Protection

This mechanism employs state-of-the-art obfuscation

techniques (introduced in Section 3) to protect the

code from analysis, code injection and execution

manipulation. Our approach is to bundle together the

Web application code with the DOM, code and data

integrity check mechanisms and use the code

execution protection to ensure that they are executed

as a whole, without being manipulated.

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

490

Figure 3: Overview of the Solution for Web Application Integrity.

We currently implemented several obfuscation-based

techniques to impose significant barriers:

(i) to application analysis (through extensive code

transformations and anti-debugging traps);

(ii) to application tampering (by using tamper-

resistant code and tamper-detection), and

(iii) to attack automation (by using diversity in the

transformed code). Further details and an evaluation

of this protection mechanism is ongoing work that we

deem out of the scope of this first effort that aims to

outline our complete Web Application integrity

framework.

5.2 Integrity Protection

As indicated in our threat model, there are scenarios

where data can be manipulated before reaching

standard secure communication channels (such as

HTTPS), therefore integrity checks must be executed

by the application that is protected by the code

execution mechanism discussed in Section 5.3.

The main mechanism for integrity protection is to

employ a message authentication code (MAC). In

order to create and verify MACs, the webserver and

the web application running on the client need to

share a session key, which we negotiate when the

Web application is first delivered to the client. We do

not rely on keys negotiated by TLS as these are

usually not available to the Web application.

We will not go through the details of the key

exchange mechanism, but our approach is to employ

a well-known key exchange protocol – the

Authenticated Diffie-Helman protocol (Diffie et al.,

1992). This requires the client to have access to a

public key of the website, and we assume this can be

made available through a server certificate that the

client can verify using common browser

functionality. There is however one important

underlying assumption: we have to trust the browser

platform to perform this verification. We think this is

a reasonable assumption as the browser should not

allow plugins to interfere with such calls and is within

our threat model.

The session key established can then be used for

DOM, code and data MAC-based integrity checks

as discussed in the following subsections. On the

server side, we need to also compute these MACs

(including a nonce to avoid replay attacks) and send

them to the Web Application code running on the

client. This is the task of the Integrity Endpoint

depicted in Figure 3.

5.2.1 Dom Integrity Check

The DOM performs as an interface between

JavaScript and the real document to allow the creation

of dynamic webpages and recent security attacks

targeted the DOM rather than the webpage itself

(Gupta and Gupta, 2017), therefore it is important to

also check the integrity of the webpage’s DOM. To

do this, we perform integrity checks of the DOM

similar to previous work (Li et al., 2009), using a one-

way hash function to compute a fingerprint of the

document on the webserver and then verify this

fingerprint on the client. One important difficulty to

overcome is that modern Web Applications make

dynamic changes to the DOM, and it is hard to

distinguish the legitimacy of the changes. Our current

mechanism performs static checks to selected

sections of the DOM, but a more sophisticated

mechanism is needed in general and we leave this for

future ongoing work.

Browser

Data	Integrity	
Check

DOM	+	Code	Integrity	Check

Web	Server

Webpage

Code	Transformation

Integrity	Endpoint

Application

Transformed	Code	+	
Webpage

Code	+	Web	
Pages

Code	execution	protected	
by	code	transformations

A Framework for Web Application Integrity

491

5.2.2 Code Integrity

Before the application code itself is executed, it needs

to be checked for its integrity and this can be trivially

done using the already established session key and

verifying the MAC and nonce computed on the client

with the ones sent by the webserver.

5.2.3 Data Integrity

During execution, the Web application might request

data from the webserver. Our approach is to, during

the code transformation phase, scan all calls that

result in these data exchanges (such as calls to

XMLHttpRequest() in JavaScript) and inject the logic

necessary to perform integrity checks on these data

(i.e. generate and verify the MACs and nonces). In

this way, we can also guarantee the integrity of the

data at the Web application being executed under the

code protection mechanism.

6 CONCLUSION

We have presented a framework, inspired by existing

building blocks, which delineates a possible future for

Web application integrity protection. Our framework

relies heavily on an obfuscation-based code

protection mechanism, which enforces a trust

boundary inside the browser. In this work, we focus

on outlining this complete Web Application integrity

framework.

As discussed, WoT applications are set to become

omnipresent, and our framework becomes even more

relevant under this assumption. Supporting different

types of devices (interoperability), with different

capabilities is one important aspect to be addressed

by our implementation. We note however that there

are already very capable platforms for WoT

applications (Sin and Shin, 2016). Proof-of-concept

implementation and performance evaluation (e.g.

evaluating overhead introduced by our code

transformations) of our proposed framework are left

as a future work.

REFERENCES

Atzori, L., Iera, A., and Morabito, G. (2010). The internet

of things: A survey. Computer networks, 54(15), 2787-

2805.

Borgolte, K., Kruegel, C., and Vigna, G. (2013). Delta:

Automatic Identification of Unknown Web-based

Infection Campaigns. In Proceedings of the 2013

ACM SIGSAC Conference on Computer and#38;

Communications Security (pp. 109–120). New York,

NY, USA: ACM. https://doi.org/10.1145/2508859.

2516725

Chang, H., Atalla, M. J. (2001). Protecting Software Code

by Guards. ACM Workshop on Digital Rights

Management.

Chow, S., Eisen, P., Johnson, H., and Van Oorschot, P. C.

(2002, August). White-box cryptography and an AES

implementation. In International Workshop on Selected

Areas in Cryptography (pp. 250-270). Springer Berlin

Heidelberg.

Collberg, C. S., and Thomborson, C. (2002). Watermark-

ing, Tamper-proofing, and Obfuscation: Tools for

Software Protection. IEEE Trans. Softw. Eng., 28(8),

735–746. https://doi.org/10.1109/TSE.2002.1027797

Cox, B., Evans, D., Filipi, A., Rowanhill, J., Hu, W.,

Davidson, J., … Hiser, J. (2006). N-variant Systems: A

Secretless Framework for Security Through Diversity.

In Proceedings of the 15th Conference on USENIX

Security Symposium - Volume 15. Berkeley, CA, USA:

USENIX Association.

Cylon.js. (2017, October). Retrieved from

https://cylonjs.com/

Diffie, W., Van Oorschot, P. C., and Wiener, M. J. (1992).

Authentication and authenticated key exchanges.

Designs, Codes and cryptography, 2(2), 107-125.

Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A.,

and Waters, B. (2013, October). Candidate indistingui-

shability obfuscation and functional encryption for all

circuits. In Foundations of Computer Science (FOCS),

2013 IEEE 54th Annual Symposium on (pp. 40-49).

Göktas, E., Athanasopoulos, E., Bos, H., and Portokalidis,

G. (2014). Out of control: Overcoming control-flow

integrity. In 2014 IEEE Symposium on Security and

Privacy (pp. 575–589). IEEE.

Gupta, S. and Gupta, B. B., 2017. Cross-Site Scripting

(XSS) attacks and defense mechanisms: classification

and state-of-the-art. International Journal of System

Assurance Engineering and Management, 8(1), pp.512-

530.

Hallgren, P. A., Mauritzson, D. T., and Sabelfeld, A.

(2013). GlassTube: A Lightweight Approach to Web

Application Integrity. In Proceedings of the Eighth

ACM SIGPLAN Workshop on Programming

Languages and Analysis for Security (pp. 71–82).

Huang, Y., Stavrou, A., Ghosh, A. K., and Jajodia, S.

(2008). Efficiently Tracking Application Interactions

Using Lightweight Virtualization. In Proceedings of the

1st ACM Workshop on Virtual Machine Security (pp.

19–28). New York, NY, USA: ACM. https://doi.org/

10.1145/1456482.1456486

IoT.js. (2017, October). Retrieved from http://iotjs.net/

Kapravelos, A., Grier, C., Chachra, N., Kruegel, C., Vigna,

G., and Paxson, V. (2014). Hulk: Eliciting Malicious

Behavior in Browser Extensions. In Proceedings of the

23rd USENIX Conference on Security Symposium (pp.

641–654). Berkeley, CA, USA: USENIX Association.

Retrieved from http://dl.acm.org/citation.cfm?id=267

1225.2671266

ICISSP 2018 - 4th International Conference on Information Systems Security and Privacy

492

Karapanos, N., Filios, A., Popa, R. A., and Capkun, S.

(2016). Verena: End-to-End Integrity Protection for

Web Applications (pp. 895–913). IEEE. https://doi.org/

10.1109/SP.2016.58

Larsen, P., Homescu, A., Brunthaler, S., and Franz, M.

(2014). SoK: Automated software diversity. In 2014

IEEE Symposium on Security and Privacy (pp. 276–

291).

Li, B., Li, W., Chen, Y.-Y., Jiang, D.-D., and Cui, Y.-Z.

HTML integrity authentication based on fragile digital

watermarking (pp. 322–325). IEEE. https://doi.org/

10.1109/GRC.2009.5255107.

Nava, E. V., and Lindsay, D. (2009). Our favorite xss filters

and how to attack them. BlackHat USA, August.

Nikiforakis, N., Invernizzi, L., Kapravelos, A., Van Acker,

S., Joosen, W., Kruegel, C., … Vigna, G. (2012). You

Are What You Include: Large-scale Evaluation of

Remote Javascript Inclusions. In Proceedings of the

2012 ACM Conference on Computer and

Communications Security (pp. 736–747). New York,

NY, USA: ACM. https://doi.org/10.1145/2382196.

2382274

Pappas, V., Polychronakis, M., and Keromytis, A. D.

(2013). Transparent ROP exploit mitigation using

indirect branch tracing. In Presented as part of the 22nd

USENIX Security Symposium (USENIX Security 13)

(pp. 447–462).

Pi.js. (2017, October). Retrieved from http://pijs.io/

Ravikumar, S., and Subramaniam, C. (2016). A Survey on

Different Software Safety Hazard Analysis and

Techniques in Safety Critical Systems.

Raggett, D. (2015). The Web of Things: Challenges and

Opportunities. Computer, 48(5), 26–32.

https://doi.org/10.1109/MC.2015.149

Schneier, B., "The Internet of Things Is Wildly Insecure —

and Often Unpatchable", Wired Magazine, January

2014.

Sin, D., and Shin, D. (2016). Performance and Resource

Analysis on the JavaScript Runtime for IoT Devices. In

International Conference on Computational Science

and Its Applications (pp. 602–609). Springer.

The Tessel Board. (2017, October). Retrieved from

https://tessel.io/

Zouganeli, E., and Svinnset, I. E. (2009). Connected objects

and the Internet of things: A paradigm shift (pp. 1–4).

A Framework for Web Application Integrity

493

