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Abstract: A botnet consists of a network of infected computers that can be controlled remotely via a command and
control (C&C) server. Typically, a botnet requires frequent communication between its C&C server and the
infected nodes. Previous approaches to detecting botnets have included various machine learning techniques
based on features extracted from network traffic. In this research, we conduct autocorrelation analysis of
traffic generated by several financial botnets, and we show that periodicity in the network traces can be used
to distinguish these botnets from each other.

1 INTRODUCTION

Periodic patterns can often shed light on the characte-
ristics of an underlying process. For example, perio-
dicity of network traffic has been used to analyze net-
work congestion (He et al., 2009). The focus of this
paper is on the analysis of periodicity features extrac-
ted from botnet traffic. Specifically, we consider fea-
tures related to each of DNS, HTTP, and TCP traffic
collected from several botnets. We perform autocor-
relation analysis on these features and show that over
a sample of four financial botnets, these features are
highly distinguishing—to the point that we could cre-
ate a distinct periodicity profile for each of these four
well-known financial botnets.

The remainder of this paper is organized as fol-
lows. Section 2 includes background information,
with the emphasis on botnets and their associa-
ted communications strategies and protocols. In
Section 3, we briefly discuss relevant related work.
Section 4 provides details on a variety of experiments
that we have performed and the results that we obtai-
ned. Finally, our conclusions and suggestions for fu-
ture work can be found in Section 5.

2 BACKGROUND

In this section, we discuss various relevant aspects of
botnets. In particular, we focus our attention on botnet
communication, as this is the feature analyzed in the
research discussed in this paper.

2.1 Botnet Basics

Also known as a “zombie army” (Hachem et al.,
2011), botnet-infected nodes are typically controlled
by a command and control (C&C) server, which acts
as the so-called botmaster. The C&C server is used
to send commands to direct the infected nodes to per-
form malicious activities such as distributed denial of
service (DDoS) attacks, collecting sensitive informa-
tion from infected hosts, financial theft, and so on.
Botnets are capable of inflicting significant financial
harm (Sood et al., 2016; Bottazzi and Me, 2015).

Botnets utilize a wide variety of techniques to pro-
pagate the bot infection (Bailey et al., 2009). In a ty-
pical scenario, a botnet uses malware as a means to
recruit additional nodes. The nodes that become in-
fected communicate with the C&C server without the
legitimate user’s knowledge. After infection, the bot-
master may send commands to the infected computers
or may poll the bots—or the bots may poll a C&C
server—on a regular basis. The C&C server might
also provide software updates to the infected bots, as
necessary.

C&C servers play a critical role not only in the
spread of botnets, but also in the long-term survival
of botnets (Tiirmaa-Klaar et al., 2013). If a C&C ser-
ver is taken down, or the communication channel is
interrupted, the botnet army is likely to become use-
less for malicious activities.

Botnets can adopt either centralized or distribu-
ted networking models for their activities. Centrali-
zed models can be implemented using hierarchical or
star topologies, with single or multiple server at the
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core. While there is essentially no communication la-
tency in a centralized model, the downside is that the
server is a single point of failure. Distributed (e.g.,
peer-to-peer) topologies do not suffer from this sin-
gle point of failure issue, but message delivery to the
infected bots is much more challenging.

2.2 Botnet Communication

The IRC and HTTP protocols are popular for botnet
communication. IRC facilitates communication bet-
ween clients in the form of text, where a chat server
acts as an intermediary to transfer messages between
clients. Due to the scalability and flexibility of the
IRC protocol (Butts and Shenoi, 2011), it would seem
to be ideal for a botnet application.

The HTTP protocol is also commonly used by bot-
nets. One advantage of an HTTP botnet is that its
traffic will tend to blend into the vast background of
HTTP traffic. Furthermore, HTTP bots frequently ex-
ploit bugs or compromised websites to communicate
with infected nodes (Hachem et al., 2011).

Regardless of the protocol used, a botmaster can
communicate with his bots in either a push or pull
mode (Hachem et al., 2011). In a push communica-
tion mode, the botmaster sends commands to bots, ty-
pically via broadcast methods. In contrast, for pull
communication, an infected node must contact the
botmaster, which typically involves periodically pol-
ling the botmaster. For botnets, an advantage of
push communication is that it is easier to coordinate
attacks, while an advantage of pull communication
is that it is likely to be considerably stealthier. Of
course, a botnet could employ a combination of both
push and pull communication.

3 RELATED WORK

In (Tyagi et al., 2015), the focus is on detecting pe-
riodicity of related content in a particular flow using
n-gram analysis and deep packet inspection. The aut-
hors cluster flows and compute a similarity score ba-
sed on a distance metric and timing analysis. These
techniques are tested on a synthetic dataset based on
the Zeus botnet, and achieve a 98% detection accu-
racy. While these results are intriguing, the reliance
on simulated data and the small size of the experi-
ments are significant limitations of this research.

The authors of the work in (Stevanovic and Pe-
dersen, 2015) and (Beigi et al., 2014) extract more
than 20 network-based features related to DNS, TCP
and UDP traffic and use these features to classify data

from 40 botnets. The authors apply a variety of clas-
sifiers based on random forests and in the best case
obtain a detection accuracy of 99%.

The research in (Jin et al., 2015) consists of cre-
ating a database of authoritative name server records
(i.e., DNS TXT records) and then using this informa-
tion to differentiate traffic. This research achieves a
“hit rate” of 19% per day. However, this research re-
lies on fixed IP addresses, which may not stay con-
stant over an extended period of time.

A decision tree classifier is applied to byte-based,
duration-based, behavior-based, and packet-based fe-
atures of botnet traces in (Beigi et al., 2014). These
authors achieve detection rates that range from 75%
to 99%.

In (Adamov et al., 2014), the authors conducted
a study of popular botnets, based on the type of fi-
les downloaded, protocols used, and encryption infor-
mation, along with various characteristics of the bot
commands. The focus of this work is on anomalous
botnet traffic. While these results are interesting, the
general applicability of the method is not clear.

Various periodicity characteristics of network fea-
tures in botnets are discussed in (Garcia et al., 2014).
Using Markov chains based on the transport layer pro-
tocol, they achieve an F-measure of 93%.

The work in (Eslahi et al., 2015) uses a variety
of metrics, including range of frequencies, and time
sequencing to determine periodicity in HTTP botnets.
A decision tree is used for classification.

4 EXPERIMENTS AND RESULTS

When examining botnet packet captures, we found
network communication in TCP and DNS to be com-
mon across all botnets that we considered. Further-
more, the HTTP protocol under TCP has a special
significance, as many botnets use HTTP for commu-
nication (via HTML). Hence, this research focuses on
features extracted from DNS, HTTP, and TCP.

4.1 Feature Selection

The features we consider have been selected while
keeping in mind techniques such as tunneling and
domain generation algorithms (DGA). Note that
DGAs are often used by botnets to generate different
domain names periodically, which can serve to make
it far more difficult to shut down the C&C server. In
addition, botnets frequently use tunneling to piggy-
back data from one protocol on top of another. By
careful use of tunneling techniques, botnets can often
evade firewall defenses.



The specific DNS, HTTP, and TCP features we
have selected for analysis are summarized in Table 1.
Note that these features capture a wide variety of cha-
racteristics of each of these protocols.

Table 1: Feature sets.

Protocol Feature Description

DNS

query type type of query
response type type of response
frame length length of data frame

frame delta yime time elapsed
query name SLD name

response TTL response time to live
answer count number of answers
response code response code

response length length of response
length of domain length of SLD

domain digits digits in SLD
bigram query score domain bigram score

HTTP

request method method used
content type type of content

response code status code
content length length of content
URL length length of URLs
cache time time of cache
cache type type of cache

header elements no. header elements
bigram score data bigram score

request interval timings
time since request elapsed time

TCP

keep alive status keep-alive flag
segment length TCP segment length

flags status no. of flags set
iRTT initial estimate RTT

length of connection duration
port port number

4.2 Autocorrelation

There are various methods available to identify perio-
dicity in a time domain signal. For example, the dis-
crete Fourier transform (DFT) maps a time domain
signal into the frequency domain, where periodicity
features are easy to distinguish.

For the research presented in this paper, we rely on
autocorrelation plots for each of the multitude of fea-
tures listed in Table 1. Autocorrelation consists of the
cross-correlation of a signal with itself. Autocorrela-
tion plots enable us to easily determine the presence
of periodic cycles in a signal via a simple visual in-
spection, and we can also determine the dominant pe-
riods in periodic signals.

Figure 1 gives an example of a periodic signal and
the corresponding autocorrelation sequence. From
the autocorrelation plot, we see that we can easily de-
duce the dominant period (or periods) of the under-
lying sequence. Another significant benefit to auto-

Figure 1: Autocorrelation of a periodic signal.

correlation analysis is that it works well, even in the
presence of considerable background noise.

For comparison, we have given an example of an
aperiodic sequence in Figure 2, along with its auto-
correlation plot. In this case, the autocorrelation se-
quence reveals that there is no periodic information
present in the original signal.

4.3 Data

The datasets used in our experiments are all publi-
cly available. The Contagio malware dump (Parkour,
2015) consists of a large number malware samples,
as well as botnet packet captures and binaries. The
Stratosphere IPS dataset (Garcia et al., 2014) is a
sister project of the malware capture facility project
(MCFP), and includes packet capture and binaries of
more than 200 botnet traces. The ISCX dataset (Beigi
et al., 2014) contains 13 traces of botnet packet cap-
tures, and also includes benign data. In this paper,
we report on periodicity experiments involving the fi-
nancial botnet data, as found in the aforementioned
datasets.



Figure 2: Autocorrelation of an aperiodic signal.

Specifically, the experiments reported here were
performed on the following four financial botnets: Ci-
tadel, SpyEye, Zeus, Tinba. These botnets have been
used to steal credentials, enable banking fraud, and
target financial institutions, among other malicious
activities. Here, we provide a brief summary of each
of the financial botnets considered in this paper.

• Citadel is a sophisticated botnet that is considered
on offshoot of Zeus. This botnet includes a va-
riety of stealth features and can be used to steal
credentials via keystroke logging, screen capture,
and video capture. The Zeus botnet is availa-
ble as a kit that was reported to sell for more
than $3000 in 2012 (Segura, 2012). As of 2013,
Citadel had been implicated in the theft of more
than $500M (BBC News, 2013).

• SpyEye includes such advanced features as key-
stroke logging, encrypted config files, an “autho-
rization grabber”, and a “Zeus killing” feature,
which serves to eliminate any possible competi-
tion from the popular Zeus botnet (Coogan, 2010).
In an all-too-rare success for law enforcement, the
developers of SpyEye were caught and recently

sentenced to long prison terms (Ribeiro, 2016).

• Zeus (also known as Zbot, among many other na-
mes) is one one of the oldest and most success-
ful financial botnets. As a result of its success,
Zeus has spawned a vast number of variants. The
Zeus botnet is primarily focused on stealing cre-
dentials and it employs a wide variety of means
to do so. Interestingly, some versions of this
botnet include sophisticated hardware-based li-
cense protections to prevent unauthorized redis-
tribution (Stevens and Jackson, 2010).

• Tinba uses fake messages and fake web forms to
try to convince users to divulge their banking cre-
dentials. In spite of being considered one of the
smallest examples of malware ever created, Tinba
includes a significant number of resiliency featu-
res designed to make it difficult to defeat. For
example, Tinba uses public key cryptography to
ensure that any updates come from an authorized
botmaster (Bach, 2015).

The collected network traffic from botnet binaries
is in the form of pcap data. Thus, for comparison, we
collected benign (i.e., non-botnet) activity also in the
form of pcap files. Of course, we also analyzed botnet
and benign traces obtained from the datasets mentio-
ned above. In all cases, protocol dissectors written in
Lua and executed in TShark (tshark, 2017) were used
to extract the relevant features.

4.4 Experimental Results

In this section, we summarize some of our main re-
sults. First, we present autocorrelation results for
background traffic, followed by a similar analysis of
four financial botnets. Then we discuss the relevance
of these results to botnet analysis. Note that a large
number of additional autocorrelation results—and re-
lated results—can be found in the report (Nagarajan,
2017).

4.4.1 Background Network Activity

The raw data for the benign features considered here
is primarily from the Stratosphere IPS dataset. Fi-
gure 3 (a) shows the autocorrelation graphs for se-
lected DNS features, while Figures 3 (b) and (c) are
analogous plots for selected HTTP and TCP features,
respectively. Note that these autocorrelation graphs
do not reveal any significant periodicity with respect
to any of these features in the background data.

Next, we present autocorrelation plots for traffic
extracted from each of the four financial botnets under
consiseration. In all cases, we observe highly periodic



(a) Selected DNS features

(b) Selected HTTP features

(c) Selected TCP features

Figure 3: Background activity autocorrelation plots.

results for multiple features within one or more of the
types of traffic under consideration.

4.4.2 Financial Botnet Network Activity

In this section, we consider the periodicity of network
traffic generated by a representative sample of finan-
cial botnets. In each case, we present DNS, HTTP,
and TCP autocorrelation plots, based on selected fea-
tures from those listed in Table 1. We also specify the
dominant period of each periodic feature.

Citadel: For the Citadel botnet, we consider network
traces obtained from the Contagio dataset. All three
of the Citadel autocorrelation plots in Figures 4 show
strong periodicity. The DNS and TCP autocorrelation
in Figures 4 (a) and (c), respectively, provide clear
evidence of a short period of about 11 and (somewhat
less clear) evidence of a longer period of about 350.
The HTTP plot in Figure 4 (b) shows a strong and
unambiguous period of 2. In this latter case, an exa-
mination of the corresponding packets reveals similar
requests and responses (but with different data) being
sent repeatedly.

The periodicity of Citadel traffic is striking. It is
appears that periodicity would likely be a useful fea-
ture for classifying traffic from this particular botnet.

SpyEye: Like Citadel, selected DNS features of Spy-
Eye show periodicity. However, in the case of Spy-
Eye, the DNS periodicity is 2, as can be deduced from
the autocorrelation plot in Figure 5 (a). The HTTP
autocorrelation plots for SpyEye given in Figure 5 (b)

(a) Selected DNS features

(b) Selected HTTP features

(c) Selected TCP features

Figure 4: Citadel autocorrelation plots.

(a) Selected DNS features

(b) Selected HTTP features

(c) Selected TCP features

Figure 5: SpyEye autocorrelation plots.

show a weak periodicity of about 23, which is sur-
rounded by fairly significant noise. The TCP featu-
res in Figure 5 (c) seem to have a weak periodicity at
around 81 packets, but more data would be needed for
confirmation.

While Citadel shows strong periodicity for se-
lected DNS, HTTP, and TCP features, the results in
Figure 5 show that SpyEye only provides similarly
strong results for its DNS traffic, with only weak pe-
riodicity in its HTTP and TCP traffic. Nevertheless,
the periodicity in the DNS traffic for SpyEye is quite



(a) Selected DNS features

(b) Selected HTTP features

(c) Selected TCP features

Figure 6: Zeus autocorrelation plots.

different than what we expect to see in background
traffic, as shown in Figure 3. Thus, periodicity analy-
sis also appears to be a strong feature for distinguis-
hing the SpyEye botnet from Citadel.

Zeus: The raw Zeus traffic considered here was obtai-
ned from the Stratosphere IPS dataset. As can be
seen from the autocorrelation plots in Figure 6 (b), the
Zeus botnet is highly periodic with respect to selected
HTTP features (with period 2). Based on the plots
in Figure 6 (a) and (c), we do not observe significant
periodicity in DNS or TCP features of Zeus.

Analogous to SpyEye, for Zeus we observe strong
periodicity in one type of traffic, but not for the other
two types. But, for SpyEye the strong periodicity was
in the DNS traffic, whereas the strong periodicity in
Zeus is in the HTTP traffic. In any case, strong perio-
dicity in any one type of traffic indicates that we have
a potentially useful feature for distinguishing traffic
generated by this particular botnet.

Tinba: Our analysis of Tinba is based on raw tra-
ces taken from the Stratosphere IPS dataset. From
the autocorrelation results in Figures 7 (b) and (c), we
see that Tinba is highly periodic with respect to all of
the selected HTTP and TCP features. Based on Fi-
gure 7 (a), it appears that there may be a weak (and
long) periodicity in Tinba DNS traffic, but this can-
not be reliably determined without substantially more
data.

While the overall periodicity in Tinba is not as
strong as Citadel, it is stronger than Zeus or SpyEye.

(a) Selected DNS features

(b) Selected HTTP features

(c) Selected TCP features

Figure 7: Tinba autocorrelation plots.

In fact, the periodicity found in each of the botnets is
distinct, and could serve to distinguish the bots from
each other. We discuss the issue further in the next
section.

4.5 Discussion

Each of the four financial botnets analyzed here shows
strong periodicity for multiple features in at least one
of the types of traffic considered (i.e., DNS, HTTP,
and TCP). As a results, we can go beyond the dis-
cussion above to construct a specific “signature” for
each botnet based on its various periodicity features.
The relevant information for each of the four financial
botnets under consideration is summarized in Table 2,
where we have shorthanded various features, e.g., “re-
quest” corresponds to any of the request-related fea-
tures listed in Table 1. Based on the results in Table 2,
it is clear that periodicity analysis provides a finger-
print for each of the four financial botnets considered
in this paper. Significantly, these fingerprints are suf-
ficient to distinguish traffic generated by any of these
four botnets from all of the others.

The point here is that we can clearly distinguish
each of these four financial botnets from each other
based on a periodicity analysis of a subset of the fe-
atures in Table 1. Furthermore, if we account for the
period lengths, it would appear that we obtain highly
discriminating signatures in each case.



Table 2: Financial botnet traffic-based signatures.

Botnet Periodic features
DNS HTTP TCP

Citadel domain content flags
initial RTT

SpyEye
frame

— —TTL
response

Zeus —

content

—
request

response
cache
URL

Tinba —

content

flags
port

request
response
header
URL

5 CONCLUSIONS AND FUTURE
WORK

We considered four financial botnets and analyzed the
periodicity of their DNS, HTTP, and TCP traffic, ba-
sed on autocorrelation plots. In each case, we found
strong periodicity features in at least one of these
traffic types, while background traffic did not exhi-
bit any significant level of periodicity. Thus, autocor-
relation analysis of botnet traffic would enable us to
distinguish between the network activity of the four
financial botnets under consideration. That is, we can
construct highly discriminating signatures for each of
these four financial botnets based on periodicity fea-
tures, and their periods.

For future work, we will analyze the effectiveness
of the periodicity-based analysis presented in this pa-
per in a realistic networked environment. In such
a case, there will be a large volume of background
noise, and our goal is to determine how well we can
distinguish botnet traffic (based on periodicity featu-
res) in such a noisy environment. We believe the fea-
tures discussed here will prove strong by themselves
and, of course, we can consider combinations of peri-
odicity features with other aspects of botnet behavior.
This problem seems ideally suited to the application
of machine learning techniques and we plan to apply
a wide variety of such techniques. Hidden Markov
models (HMM) (Stamp, 2004), profile hidden Mar-
kov models (PHMM) (Durbin et al., 1998), support
vector machines (SVM) (Berwick, 2003), and neural
networks (Mukkamala et al., 2002) would appear to
be obvious candidates for application to this particu-
lar problem.

REFERENCES

Adamov, A., Hahanov, V., and Carlsson, A. (2014). Disco-
vering new indicators for botnet traffic detection. In
Proceedings of IEEE East-West Design Test Sympo-
sium (EWDTS 2014), pages 1–5.

Bach, O. (2015). Tinba: Worlds smallest malware has big
bag of nasty tricks. https://securityintelligence.com/
tinba-worlds-smallest-malware-has-big-bag-of-nasty-
tricks/. Accessed 2017-10-15.

Bailey, M., Cooke, E., Jahanian, F., Xu, Y., and Karir, M.
(2009). A survey of botnet technology and defenses.
In 2009 Cybersecurity Applications Technology Con-
ference for Homeland Security, pages 299–304.

BBC News (2013). FBI and Microsoft take down $500m-
theft botnet Citadel. BBC News, http://www.bbc.com/
news/technology-22795074. Accessed 2017-10-15.

Beigi, E. B., Jazi, H. H., Stakhanova, N., and Ghorbani,
A. A. (2014). Towards effective feature selection in
machine learning-based botnet detection approaches.
In 2014 IEEE Conference on Communications and
Network Security, pages 247–255.

Berwick, R. (2003). An idiots guide to support
vector machines (SVMs). http://www.svms.org/
tutorials/Berwick2003.pdf.

Bottazzi, G. and Me, G. (2015). A Survey on Financial Bot-
nets Threat. Springer International Publishing, Cham.

Butts, J. and Shenoi, S. (2011). Critical Infrastructure Pro-
tection V: 5th IFIP WG 11.10 International Confe-
rence on Critical Infrastructure Protection, Revised
Selected Papers. Springer Berlin Heidelberg.

Coogan, P. (2010). SpyEye bot versus Zeus bot. https://
www.symantec.com/connect/blogs/spyeye-bot-
versus-zeus-bot. Accessed 2017-10-15.

Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. (1998).
Biological Sequence Analysis: Probabilistic Models
of Proteins and Nucleic Acids. Cambridge University
Press, Cambridge.

Eslahi, M., Rohmad, M. S., Nilsaz, H., Naseri, M. V., Ta-
hir, N., and Hashim, H. (2015). Periodicity classifi-
cation of http traffic to detect http botnets. In 2015
IEEE Symposium on Computer Applications & Indus-
trial Electronics (ISCAIE), pages 1–5.

Garcia, S., Grill, M., Stiborek, J., and Zunino, A. (2014).
An empirical comparison of botnet detection methods.
Computers & Security, 45:100–123.

Hachem, N., Mustapha, Y. B., Granadillo, G. G., and Debar,
H. (2011). Botnets: Lifecycle and taxonomy. In 2011
Conference on Network and Information Systems Se-
curity, pages 1–8.

He, X., Papadopoulos, C., Heidemann, J., Mitra, U., and
Riaz, U. (2009). Remote detection of bottleneck links
using spectral and statistical methods. Computer Net-
works, 53(3):279–298.

Jin, Y., Ichise, H., and Iida, K. (2015). Design of detecting
botnet communication by monitoring direct outbound
dns queries. In 2015 IEEE 2nd International Confe-
rence on Cyber Security and Cloud Computing, pages
37–41.



Mukkamala, S., Janoski, G., and Sung, A. (2002). Intru-
sion detection using neural networks and support vec-
tor machines. In Proceedings of the 2002 Internatio-
nal Joint Conference on Neural Networks, volume 2
of IJCNN’02, pages 1702–1707. IEEE.

Nagarajan, P. (2017). Analysis of periodicity in botnets.
Master’s Project, Department of Computer Science,
San Jose State University. http://scholarworks.
sjsu.edu/etd projects/544/.

Parkour, M. (2015). Collection of pcap files from malware.
Contagio Malware Dump. Accessed 2016-11-20.

Ribeiro, J. (2016). SpyEye botnet kit developer sentenced to
long jail term. PCWorld, https://www.pcworld.com/
article/3059557/spyeye-botnet-kit-developer-
sentenced-to-long-jail-term.html. Accessed 2017-10-
15.

Segura, J. (2012). Citadel: A cyber-criminals ulti-
mate weapon? https://blog.malwarebytes.com/threat-
analysis/2012/11/ citadel-a-cyber-criminals-ultimate-
weapon/. Accessed 2017-10-15.

Sood, A. K., Zeadally, S., and Enbody, R. J. (2016). An
empirical study of http-based financial botnets. IEEE
Transactions on Dependable and Secure Computing,
13(2):236–251.

Stamp, M. (2004). A revealing introduction to hid-
den Markov models. https://www.cs.sjsu.edu/
∼stamp/RUA/HMM.pdf.

Stevanovic, M. and Pedersen, J. M. (2015). An analysis
of network traffic classification for botnet detection.
In 2015 International Conference on Cyber Situatio-
nal Awareness, Data Analytics and Assessment (Cy-
berSA), pages 1–8.

Stevens, K. and Jackson, D. (2010). ZeuS banking trojan
report. https://www.secureworks.com/research/zeus.
Accessed 2017-10-15.

Tiirmaa-Klaar, H., Gassen, J., Gerhards-Padilla, E., and
Martini, P. (2013). Botnets. SpringerBriefs in Cy-
bersecurity. Springer London.

tshark (2017). tshark — the Wireshark network ana-
lyzer. https://www.wireshark.org/docs/man-pages/
tshark.html. Accessed 2017-10-15.

Tyagi, R., Paul, T., Manoj, B. S., and Thanudas, B. (2015).
A novel http botnet traffic detection method. In 2015
Annual IEEE India Conference (INDICON), pages 1–
6.


