
Towards Multi-cloud SLO Evaluation

Kyriakos Kritikos, Chrysostomos Zeginis, Andreas Paravoliasis and Dimitris Plexousakis
ICS-FORTH, N. Plastira 100, Vasilika Vouton, 70013, Heraklion, Crete, Greece

Keywords: Complex Event Processing, Event Pattern, Detection, Service.

Abstract: A modern service-based application (SBA) operates in a cross-cloud, highly dynamic environment while com-
prises various components at different abstraction levels that might fail. To support cross-level SBA adaptation,
a cross-cloud Service Level Objective (SLO) monitoring and evaluation system is required, able to produce
the right events that must trigger suitable adaptation actions. While most research focuses on SBA monitoring,
SLO evaluation is usually restricted in a centralised, single-cloud form, not amenable to heavy workloads that
could incur in a complex SBA system. Thus, a fast and scalable event generation and processing system is
needed, able to scale well to handle such a load. Such a system must address the cross-level event composition,
suitable for detecting complex problematic situations. This paper closes this gap by proposing a novel complex
event processing framework, scalable and distributable across the whole SBA architecture. This framework
can cover any kind of event combination, no matter how complex it is. It also supports event pattern manage-
ment while exploits a publish-subscribe mechanism to: (a) synchronise with the modification of adaptation
rules directly involving these event patterns; (b) enable the decoupling from an SBA management system.

1 INTRODUCTION

Modern SBA systems start exploiting the cloud to
benefit from its main advantages, including flexible
pricing and resource management. However, cloud
migration comes with certain challenges. First, the
cloud is out of SBA provider control and offers only
restrictive management actions over the abstracted re-
sources. Second, the cloud is a dynamic environment
in which resources can fail or under-perform, espe-
cially if they are shared among different customers.

In an SBA, the above challenges can be exacer-
bated due to the complexity introduced by the mul-
tiple levels incorporated and their dependencies. Be-
sides, level-specific adaptation can fail due to the vi-
cious adaptation cycle (Zeginis et al., 2015). As such,
there is a need for a management system able to mon-
itor and adapt the SBA across all levels via the coor-
dinated execution of level-specific adaptation actions.

As a glue between monitoring and adaptation, an
SLO evaluation framework must evaluate the SLOs
of the SLA between the SBA provider and requester
and generate events that can trigger SBA adaptation.
However, due to the SBA complexity and the speed
in which events occur at the infrastructure level, such
a framework must exhibit fast and scalable event pro-
cessing. Such processing needs to be aligned with

the main SBA adaptation goals to avoid overspend-
ing precious system resources. As such, only those
events or event patterns leading to the need to trigger
adaptation actions should be detected.

The recent advent of sophisticated cross-level
SBA monitoring and adaptation systems can be ob-
served. Such systems, however, exhibit poor event
processing, as they are not scalable to handle an in-
creasingly huge event number. To close this gap,
this paper presents a novel SLO evaluation frame-
work with the following features: (a) scalable and
distributable across the whole SBA architecture; (b) it
relies on a scalable complex event processing engine;
(c) is based on CAMEL, a Domain-Specific Language
(DSL) supporting multi-cloud SBA management; (d)
it exploits publish-subscribe mechanisms to be decou-
pled from specificities of other SBA management sys-
tem parts; (e) it supplies an event pattern management
service so as to synchronise with modifications on the
SBA adaptation behaviour specification.

The rest of the paper is structured as follows. Sec-
tion 2 supplies the paper’s running example. Sec-
tion 3 reviews the state-of-the-art. Section 4 explains
CAMEL. Section 5 analyses the proposed framework
architecture. Section 6 explains how event pattern
models are generated from CAMEL adaptation rules.
Finally, Section 7 concludes the paper.

Kritikos, K., Zeginis, C., Paravoliasis, A. and Plexousakis, D.
Towards Multi-cloud SLO Evaluation.
DOI: 10.5220/0006684604090417
In Proceedings of the 8th International Conference on Cloud Computing and Services Science (CLOSER 2018), pages 409-417
ISBN: 978-989-758-295-0
Copyright c© 2019 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

409



2 USE CASE

As a running example, we adopt a use case from
the CloudSocket project1, dealing with Business Pro-
cess (BP) management in the Cloud. This use case
concerns developing and deploying a BP as a ser-
vice (BPaaS), named as “SendInvoice”, supporting
the functionality of invoice generation and sending.

Internally, the “SendInvoice” BPaaS utilises 2
main services: (a) the YMENS CRM external SaaS
focusing on customer relationship management; (b)
the “Invoice Ninja” internal invoice management
component, purchased and deployed in the Amazon
Cloud on a “m1.medium” VM. Both services are
combined into a technical workflow, deployed in the
cloud, which incorporates tasks mapping to certain
methods of these services.

The initial cloud deployment of “SendInvoice”
BPaaS maps to a certain (both type & instance-
based level) topology, depicted in Fig.1 and speci-
fied in CAMEL. In this topology, one instance of
the “InvoiceNinja” internal component, named as “In-
voiceNinja inst1” has been deployed on one instance
of the “m1.medium” VM called “m1.medium inst1”.

Figure 1: The topology of the “SendInvoice” BPaaS.

Suppose that the organisation, i.e., a Cloud Bro-
ker, offering the BPaaS, must control its provisioning
to sustain a suitable service level offered in the con-
text of an SLA. As the set of customers purchasing
and using the BPaaS can grow, this Broker must also
control the amount of resources dedicated to “Invoice
Ninja” via scaling and be able to replace YMENS
CRM if it is under-performing. Thus, the broker de-
fines a set of CAMEL adaptation rules shown in Table
1 (abstracted away in restricted form of CAMEL tex-
tual syntax) that scale out “Invoice Ninja” or replace
“YMENS CRM” with another SaaS. These rules are

1www.cloudsocket.eu

then supplied as input to the BPaaS Execution Envi-
ronment of the CloudSocket platform which performs
the adaptation actions required, when needed. The
SLO Evaluation framework proposed can belong to
such an environment to enable it to truly sustain a suit-
able service level for SLO evaluation.

where raw cpu & raw mem are the Raw CPU and
Raw Memory Utilisation metrics, mean rt, mean cpu
and mean avail are the MEAN Response Time, CPU
Utilisation and Availability metrics while IN repre-
sents “Invoice Ninja” and YC “YMENS CRM”.

Rules R1 & R3 focus on scaling out “Invoice
Ninja”. R1 attempts to immediately scale this com-
ponent when one of its instances is severely over-
loaded. R2 attempts to replace “YMENS CRM” when
its mean response time is beyond a certain threshold
and its availability drops under a certain level.

3 RELATED WORK

Many research approaches has been proposed target-
ing SLO evaluation in dynamic environments like the
Cloud. (Ludwig et al., 2015) proposes the rSLA SLA
language and management service. rSLA has been
validated using IaaS-related SLOs.

(Wu et al., 2013) proposes a cloud-based SLA
classification model which distinguishes SLA param-
eters for each cloud level. An SLA evaluation method
is also introduced, able to produce a final cloud ser-
vice score by considering the preferences and require-
ments of both the service provider and consumer.

(Bahga and Madisetti, 2013) proposes a perfor-
mance evaluation approach for complex multi-tier
cloud applications which captures the application
workload via 3 different models: benchmark, work-
load, and architecture. Based on the architecture
model, a certain methodology is proposed to facilitate
selecting the most effective deployment meeting the
application requirements. A comparison of different
deployment architectures is performed to detect sys-
tem bottlenecks and thus lead to right design choices.

The DeSVi single-cloud architecture
(Emeakaroha et al., 2012) supports SLA viola-
tion detection by employing the LoM2His framework
for application monitoring and translating low-level
metrics into high-level SLOs. LoM2His can opti-
mally tune the SLA parameter monitoring interval.

Very few approaches deal with CEP in the
cloud. (Higashino, 2016) proposes CEP as a Service
(CEPaaS) to enable using CEP with the advantages
offered by a service model. (Leitner et al., 2012) pro-
poses another CEP-based event correlation approach
relying on a predefined event hierarchy.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

410



Table 1: The 3 CAMEL adaptation rules.
ID Rule Content
R1: EVERY(raw cpu(m1.medium)> 85% AND raw mem(m1.medium)> 90%)⇒ scale−out (IN)
R2: EVERY(mean rt (YC)> 30 AND mean avail (YC)< 99.5%)⇒ replace(YC)
R3: EVERY(mean cpu(m1.medium)> 70% AND mean avail (IN)< 90⇒)scale−out (IN)

4 BACKGROUND – CAMEL
OVERVIEW

CAMEL is a multi-DSL, developed in the PaaSage2

project for specifying all relevant aspects in multi-
cloud SBA lifecycle, including deployment, require-
ment, metric, and scalability aspects. CAMEL inte-
grates existing aspect-specific DSLs, like CloudML
(Ferry et al., 2013) (deployment aspect), plus new
ones, like the Scalability Rule Language (Kritikos
et al., 2014) (metric & scalability aspects). As this
paper focuses on SLO evaluation that is also related
to SBA adaptation, only the metric and scalability as-
pects are analysed.

The metric aspect, captured by CAMEL’s metric
package, covers all measurement details needed to
specify a metric, like formulas, measurement sched-
ules and windows. This package enables also to spec-
ify conditions over metrics to be exploited to define
SLOs and non-functional events in scalability rules.

The scalability aspect has been recently adapted
(Kritikos et al., 2017) in CloudSocket to cover speci-
fying complex adaptation rules and not just scalabil-
ity ones. Such rules can then drive cross-level multi-
cloud SBA adaptation. These rules map single events
or event patterns to an adaptation workflow compris-
ing level-specific adaptation actions.

Due to this paper focus, only the conceptualisa-
tion of events and event patterns (EPs) will be further
analysed for the adaptation aspect. An event can be
single or composite. A single, non-functional event
maps directly to the violation of a metric condition.
A composite event maps to specifying a unary or bi-
nary EP, i.e., an event composition on which a certain
time or logical operator applies. A unary EP applies
an unary operator, like (logical) NOT, over a certain
event. A binary EP applies a binary operator, like the
PRECEDES time-based one over two events. Time-
based operators have been mainly inspired from Es-
per’s Event Pattern Language (EPL)3.

As a composite event can map to any event kind,
CAMEL can specify a hierarchy of EPs. This enables
it to support specifying any complex problematic sit-
uation. For instance, consider running example’s R1

2https://paasage.ercim.eu/
3http://www.espertech.com/esper/

rule. For this rule, we have the specification of a unary
EP EP1 that applies the EVERY operator over the EP2
EP. The latter is a binary EP that applies in turn the
AND logical operator over two single events mapping
to the two metric conditions in R1, respectively.

5 SLO EVALUATION
FRAMEWORK

5.1 Framework Logical Architecture

Figure 2 depicts the modular architecture of the pro-
posed SLO Evaluation Framework comprising 3 main
levels: (a) interface; (b) core logic; (c) database (DB).
At the interface level, a REST service wraps the main
actions (add, update, delete) that can be performed
over EPs, by also being able to parse SRL fragments
specifying such EPs. These actions are mapped to un-
derlying calls on other framework components.

Figure 2: The SLO Evaluation Framework architecture.

The core logic level includes EP Parser, able to
process the EPs obtained from the EP Service. De-
pending on the action requested, different interactions
occur between components at this and the DB level.

EP Addition. The EP Parser transforms the
CAMEL model of the EP to be added into a speci-
fication conforming to the CEP framework’s EP lan-
guage. The produced specification is then registered
in that framework’s CEP Server to be immediately de-
tected. The names of metrics directly involved in the
conditions of the EP’s events are also sent to the Met-
ric Subscriber. The latter first updates its local metric

Towards Multi-cloud SLO Evaluation

411



list in the EP DB for fault-tolerance and rapid recov-
ery reasons and then subscribes to such metrics, when
they are new, in the Metric Publisher. The latter com-
ponent publishes the values of the metrics monitored
to potential subscribers. Thus, it could well match a
Monitoring Engine of an SBA management system.

Once registration of both the new EP and its met-
rics finishes, the EP addition is deemed successful.
Thus, the EP Parser can then store the new EP in
the EP DB for recovery reasons but also for gathering
statistics about EPs, when being detected by the Esper
Server. The EP DB takes the form of a model reposi-
tory able to store, query and manipulate CAMEL EP
models along with their statistics.

EP Deletion. For this action, the EP is first ob-
tained from EP DB. Then, EP Parser informs in par-
allel both CEP Server and Metric Subscriber about
the EP deletion such that: (a) the CEP Server can
deregister the EP’s EPL specification; (b) the Metric
Subscriber, after checking that the EP metrics to be
removed are not exploited in other EPs, can unsub-
scribe to these metrics to reduce system load.

EP Update. Here, the previous EPL statement is
updated with the new one generated by EP Processor.
Metric Subscriber also adds / removes metrics which
are / not needed any more by any EP, respectively.

The EP management actions can be initiated via
either the interaction of the proposed system with an
external agent/user or the use of a publish-subscribe
mechanism. This has the advantage that we can easily
switch from one to another interaction mechanism or
have both available at the same time.

The above analysis covered the interactions in the
context of EP management actions. Apart from this,
some system components continuously run to support
the delivery of the SLO evaluation functionality ex-
pected from the proposed system. The functionality
of these components in explicated in detail below.

While Metric Subscriber subscribes to metrics, it
can also asynchronously receive measurements for
such metrics from Metric Publisher. These mea-
surements are transformed by Metric Subscriber into
events that are fed into the CEP Server. Once the lat-
ter receives all suitable events, it can detect EPs and
subsequently inform the Event Publisher.

The EP Publisher will then publish these events to
interested EP Subscribers, which could take the form
of adaptation engines able to execute the respective
adaptation rule(s) triggered. In parallel to this publi-
cation, the EP Publisher also updates EP DB to mod-
ify the statistics of the EP(s) concerned.

The adoption of publish-subscribe mechanisms
for measurement retrieval and SLO event publishing
not only decouples the proposed framework from any

SBA Management system but also enables such sys-
tem to take any distributed or centralised form, es-
pecially concerning its adaptation part, to balance its
workload. This is achieved by enabling all distributed
system parts to subscribe to the EP Publisher to, e.g.,
manage their own adaptation space part, i.e., specific
EPs. As next sub-section will show, the presented log-
ical framework architecture has different physical im-
plementation options that could well fit the distributed
form of a SBA management system.

5.2 Physical Framework Architecture

The presented logical architecture can have various
implementation options at the physical level. To
choose the most optimal one, we need first to consider
what can be distributed in that architecture and how
the whole management system can be distributed.

For the whole management system, (3) levels can
be involved: (1) the global responsible to manage the
application as a whole; (2) the cloud one where man-
agement is restrained to a single cloud and all appli-
cation components are deployed there; (3) the user
VM level where management applies only on appli-
cation components hosted on that VM. In each level,
we also imagine that there are monitoring and adap-
tation components. Monitoring at the global level en-
ables to assess application and cross-cloud metrics as
well as application reconfiguration. Cloud-level mon-
itoring enables to assess cloud-specific metrics plus
perform adaptation actions, usually concerning appli-
cation component scaling. Finally, VM-level moni-
toring enables to assess instance-based metrics plus
adapt the application components hosted.

Our framework has the next distribution options:
(a) it can be distributed as a whole such that different
instances could be installed in different clouds; (b)
only parts incurring the most load can be distributed,
mapping to agglomerating the CEP Server and Event
Publisher. In the latter case, the distribution does not
need to follow any cloud-specific pattern. We just
scale that agglomeration based on the workload into
a suitable number of instances. The part mapping to
the Metric Subscriber could also be distributed, not
only due to the monitoring load to be faced but also
to reduce latency by following the pattern of distri-
bution of the SBA management system monitoring
part. The two parts that can be distributed are named
as event processing part (EPP) and monitoring part
(MP). The rest of framework components are also par-
titioned into a service part (SP), comprising the REST
service and EP Parser, and the DB part (DP) includ-
ing the EP DB. These parts could also be scaled; such
a scaling would remain at the same level and will be

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

412



Figure 3: Most suitable physical framework deployment.

less frequent than the other parts. Fig. 2 depicts this
partitioning of the framework architecture.

By considering the distribution options for the
SBA management system and proposed framework,
an optimal architecture is suggested (see Fig. 3) in-
volving the aforementioned 3 levels. Our framework
is mainly positioned at the 2 top levels while only the
monitoring subscription part is distributed at all lev-
els. Further, different framework parts in a certain
level are deployed in different VMs to enable the on-
demand scaling of respective framework components.

At the global level, we have all framework parts
deployed separately in different VMs. We do need the
whole framework functionality, especially as the en-
try points to the whole SBA management system lie at
this level. At the cloud level, only the EPP & monitor-
ing parts should be deployed as focus is more on core
framework functionality. At the VM level, we foresee
only deploying the MP part as precious user resources
would have been stolen by also incorporating the EPP
part in this intrusive monitoring approach. As such,
the event processing could still occur by moving at
the cloud level and would enable reserving as much
resources as possible for this processing.

6 EVENT PATTERN
GENERATION

6.1 CAMEL to EPL Construct
Mapping

As CAMEL is inspired by Esper EPL, all CAMEL
event composition constructs map directly to EPL
constructs. Table 2 shows this mapping via a re-
stricted CAMEL concrete syntax form where specific
information is filtered out (including the EP name
plus the names of the attributes in this EP definition).

In this table, A and B represent any event kind,
while T a timer, representing a time interval. The

mapping between timer models in CAMEL and EPL
is straightforward. Three timer kinds are supported:

• WITHIN: indicates a time period within which an
EP should occur. First EP occurrence is enough to
consider that whole event composition is satisfied.

• WITHIN MAX: similar to previous timer but im-
poses a bound over the number of times the re-
spective EP should occur. Thus, the whole com-
position is satisfied when either the bound is
reached or the time period has been finished.

• INTERVAL: indicates the time period to pass so as
to proceed with the next event composition part.
For instance, an EP could indicate that we must
see one occurrence of A and then wait until 60
seconds until we consider that the EP is satisfied.

6.2 Camel to EPL Mapping

As an EP can be a composition of other EPs, any
kind of composite event expression can be specified in
CAMEL and then be completely mapped to EPL. The
latter mapping follows a top-down process by con-
sidering an event composition in an EP as a tree that
can be processed from its single root node down to its
leaves. The leaf nodes correspond to single events,
while intermediate or root node map to composite
events with a certain operator applying to them.

The pseudo-code of the transformation algo-
rithm can be found in https://drive.google.com/
open?id=1TPwF64GtgA0iFbz6c3IzJYqE IktspIL.
As it can be seen, the algorithm checks the event type
concerned and then employs specific event handling
code to process it. Single events are handled by a
function analysed in the next subsection.

For unary EPs, we obtain the String-based EPL
representation of the single event referenced by call-
ing recursively the same algorithm, and then we con-
dition over the operator involved to apply the respec-
tive transformation logic encoded in Table 2 and thus
finally return the EPL representation of this unary EP.

For composite EPs, the logic is more complicated
as we deal either with 2 events or one event and timer.
In particular, we obtain the String representation of
the left and right EP parts by checking whether they
map to an event or a timer. In case of an event, we call
recursively the algorithm to obtain its EPL represen-
tation. For a timer, we call the processTimer function
to obtain its EPL representation. As the latter trans-
formation is trivial, we omit its presentation. Once we
obtain the EPL representations of both left and right
EP parts, we condition over the binary EP operator to
apply the transformation logic encoded in Table 2 and
thus finally return the binary EP’s EPL representation.

Towards Multi-cloud SLO Evaluation

413



Table 2: Mapping of CAMEL to Esper EPL Constructs.
CAMEL Construct EPL Construct Explanation

A EVERY every A every occurrence of A
A NOT not A non-occurrence of A

A REPEAT Y [Y] A Y times A has occurred
A WHEN T Y [Y] A until T Y times A has occurred within time period designated by time T

A AND B A and B logical conjunction of A and B
A OR B A or B logical disjunction of A and B

A XOR B (A and not B) or (not A and B) exclusive occurrence of A or B
A PRECEDES B A -> B A followed by B

A REPEAT UNTIL B Y1 Y2 [Y1:Y2] A until B A should occur from Y1 to Y2 times until B occurs

6.3 Event Correlation

Previous sub-section presented the core logic for
transforming a CAMEL EP into an Esper EPL expres-
sion. Intentionally, that presentation did not explain
how single events are transformed into EPL expres-
sions, as events in an EP statement need to be cor-
rectly correlated which then requires a special han-
dling of their transformation. The goal of this sub-
section is to explain how this handling takes place.

Before explaining this, we need to explicitly deter-
mine what an event correlation signifies: it indicates
that the events involved in it should be associated with
either the same measured components or components
connected in the SBA dependency hierarchy. For in-
stance, two events can focus on the same application
component or one event can be related to a compo-
nent and the second event to the VM hosting it. With-
out such correlation, we risk that we react on wrong
EPs. For example, suppose a certain EP includes two
events A and B, both at the level of a single appli-
cation, which could be detected for two different ap-
plications. Suppose further that Esper detects event
A mapping to the first application and event B to the
second. Without properly correlating A and B, it will
then be inferred that the EP has occurred and the adap-
tation action mapped to that EP needs to be triggered.

6.3.1 Measurement Representation in EPL
Events

The need to handle correlations impacts the way mea-
surements are represented as information concerning
the measured component should be already present
and copied accordingly in the event’s internal repre-
sentation in Esper. Thus, as our system receives mea-
surements, these measurements must carry informa-
tion supporting us in their mapping to single events to
be then processed by Esper for EP detection purposes.

Based on the above, we assume the following: (a)
Metric Subscriber subscribes only to metrics based on
their name; (b) Metric Publisher publishes measure-
ments for metrics that might be equally named. So,
the published measurement information must be suf-
ficient to enable the framework to identify exactly the
object being measured so as to distinguish between

measurements of the same metric.
Another assumption is that our EP detection

framework is decoupled from the dependency knowl-
edge it should possess at the instance level that would
have to be drawn from the SBA management system
via, e.g., its models@runtime component (Blair et al.,
2009). This enables it to connect without any effort
to different management systems and not to be tightly
coupled with just one. Such a decoupling requires
to encode this dependency information inside every
measurement. As such, we pay the small penalty of
minor duplication of the information being published.

The measurement information published, map-
ping to our internal event representation in Esper, in-
cludes the next information pieces that map to both
the SBA type and instance topology: (f1) the met-
ric’s name (e.g., MeanResponseTime); (f2) the met-
ric’s value; (f3) the measurement timestamp; (f4) the
name of the SBA concerned; (f5) the name of the
component measured; (f6) the name of the component
instance; (f7) the name of the VM measured; (f8) the
name of the VM instance.

Values for fields f1-f4 must be always supplied,
while, depending on the level and kind of component
measured, only values for some of the other fields
must be provided based on the following cases map-
ping to the type of measurement:

• C1 – ApplicationMeasurement: as measurement
concerns whole SBA, no extra fields are needed.

• C2 – VMMeasurement: the measurement con-
cerns one VM. 2 sub-cases can hold: (C2.1) only
field f7 must be supplied as the measurement con-
cerns the VM type (e.g., m1.medium) and not its
instance; (C2.2) the measurement concerns the
VM instance (e.g., m1.medium inst1), so we must
provide both fields f7 & f8 as the type of the VM
instance concerned must be supplied.

• C3 – ComponentMeasurement: it concerns a
certain component. 2 sub-cases can hold: (C3.1)
it concerns the component type (e.g., “InvoiceN-
inja”). So, apart from field f5, we must supply
field f7 (provide, e.g., the value of “m1.medium”)
to explicate for which component-to-VM de-
ployment the current measurement holds as one
component might be logically deployed into mul-

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

414



tiple VMs within the same deployment topology;
(C3.2) the measurement concerns a component
instance (e.g., “InvoiceNinja Inst1”). Thus, all
fields must be supplied to cover the deployment
of both that component instance at the instance
level and its (component) type at the type level.
As such, in the running use case, the following
measurement field values will be supplied:
f5=“InvoiceNinja”, f6=“InvoiceNinja Inst1”,
f7=“m1.medium”, f8=“m1.medium inst1”.

6.3.2 Single Event CAMEL-to-EPL
Transformation

The uniform way we represent events in Esper en-
ables us to map single CAMEL events to a String EPL
representation. Such mapping, however, must con-
sider the correlation between events at the same EP.
This can be achieved by considering both the CAMEL
application topology at the type level and the runtime
information about the instance level for that topology,
obtained from the respective measurements retrieved.

However, for the latter, we need to distinguish be-
tween: (a) measurement evaluation information ex-
amined at event processing time; (b) event correlation
information generated at event specification time. In
the second case, we must perform the correlation by
considering that each component or VM will map to
a certain instance, not known at design time but deter-
mined by the first event for which the evaluation will
be performed. This is where contextual information
comes into play. In particular, we use a context ob-
ject (see previous pseudo-code) to remember the first
event referring to the instance of a component/VM.
Thus, relevant events subsequently processed for the
current EP at hand will be correlated via information
pertaining to that event and captured by that object.

The main logic of the transformation from
CAMEL single events to the developed Mea-
surement class in Esper can be seen in the
pseudo-code available at https://drive.google.com/op
en?id=1LepdhHnSm71r87zUrCzMEAjgtmSL3tDO.

In a nutshell, the algorithm, by also exploiting the
contextual information dynamically created and ex-
panded, attempts first to generate the basic EPL event
description part, common across any single event to
be processed, comprising: (a) an identifier to prop-
erly identify the event and be able to correlate it with
the next ones in the processing order; (b) the values of
fields f1-f4; (c) depending on the type of component
concerned, values of fields f7 and/or f5. Concerning
the third information piece, we have already indicated
the different cases that might hold at the type level
(see Cases C3.1 and C2.1) with the sole exception that
when we have only the application being measured

(Case C1), none of these 2 fields must be specified.
When we face a composite metric concerning the

type level, processing stops. Otherwise, if need to ad-
dress a raw metric concerning the instance level, pro-
cessing continues based on sub-cases C2.2 and C3.2.

For C2.2, we check if the instance of the VM was
already involved in a previously processed event. If
this holds, we get the respective reference from the
context object and expand the internal condition of
the EPL event String to be generated. Otherwise, the
current event is the reference event for this VM in-
stance; we then inform the context object about this
to cater for processing the next events in the same EP.

For C3.2, we similarly check if the component in-
stance has been already stamped in the context ob-
ject. If this holds, we expand the EPL internal event
condition with correlation information. However, this
time we correlate both this component instance and
the VM instance on which it was deployed based on
the respective events of reference in the context ob-
ject. Otherwise, we mark the current event as the
reference event of the component instance. In case
the VM instance has been already referenced, we still
expand the current EPL String with the reference of
the respective event. If not, we also make the current
event as the reference event of this VM instance.

6.4 Use Case Application

We apply our CAMEL-to-EPL transformation algo-
rithm on the running use case. We focus on adaptation
rule R1, the most complicated in terms of handling.

By considering the CAMEL model of R1’s unary
EP, there is a tree with 3 levels where there is one
root node (unary EP) with EVERY composition oper-
ator and one intermediate node (binary EP) with AND
as composition operator. By applying the processEP
transformation method on the top EP, we will first
generate the EPL statement for the intermediate node
by calling the same method recursively and then we
will apply the EVERY operator based on the seman-
tics of Table 2 to produce the final EPL statement. So,
if intermediate node’s EPL statement is “X”, the final
EPL statement would be: “every (X)”. Now, let’s fo-
cus on how the intermediate node will be processed.

We will first process the left binary EP part map-
ping to the raw CPU utilisation condition by calling
recursively the emphprocessEP method. As this con-
dition maps to a single event, eventually the processS-
ingleEvent method will be called to construct first the
basic EPL event string by including the fields f1-f4:

ev1=Event(metric=’CPUUtilisation’ and value >= 85 and applica-
tion=’SendInvoice’ and vm=’m1.medium’

We will then discover that Case 2.2 holds such that

Towards Multi-cloud SLO Evaluation

415



we must only handle the instance of ‘m1.medium’
VM. After checking the context object, there is no
previous reference to that instance as this is the first
event being processed. So, the context object will
be updated to include a reference to this event (i.e.,
“ev1.vmInstance”) in case we need to refer to the in-
stance of ‘m1.medium’ VM, while the String of the
event EPL specification will be ended with ”)”.

Next, we will process the binary EP’s right part
related to the condition on raw memory utilisation by
involving again the same call sequence (processEP
followed by processSingleEvent). The first part of this
event will be similar to that of the previous one (only
metric and condition sub-parts differing):

ev2=Event(metric=’MemoryUtilisation’ and value >= 90 and appli-
cation=’SendInvoice’ and vm=’m1.medium’

In this case, we deal with the same VM as in the
previous event by also handling the instance level.
Thus, we will again check the context object and find
out that the event of reference for an instance of the
‘m1.medium’ VM will be “ev1.vmInstance”. This
will lead to expanding and subsequently finalising the
respective EPL statement as follows:

ev2=Event(metric=’MemoryUtilisation’ and value >= 90 and
application=’SendInvoice’ and vm=’m1.medium’ and vmIn-
stance=ev1.vmInstance)

Finally, having the 2 EP parts already determined,
we just need to combine them based on AND oper-
ator semantics in Table 2. This will eventually lead
to producing the final EPL statement for the binary
EP which, when enhanced with the application of the
EVERY operator, will take the following final form:

every(ev1=Event(metric=’CPUUtilisation’ and value >= 85
and application=’SendInvoice’ and vm=’m1.medium’) and
ev2=Event(metric=’MemoryUtilisation’ and value >= 90 and
application=’SendInvoice’ and vm=’m1.medium’ and vmIn-
stance=ev1.vmInstance))

Due to space restrictions and the simpler complex-
ity in their processing, we will not elaborate on the
rest of the adaptation rules of the running use case.

7 CONCLUSIONS AND FUTURE
WORK

This paper has proposed a novel SLO evaluation
framework for SBAs that is scalable and distributable
across the whole SBA architecture. This framework
relies on a modular architecture with different realisa-
tion options at the physical level. It also encompasses
the well-known Esper CEP engine enabling the scal-
able processing of complex EPs even in a centralised

setting. It also relies on CAMEL’s SRL sub-DSL en-
abling it to: (a) fully specify the event parts of SBA
adaptation rules; (b) be more focused on processing
and detecting only those EPs related to the SBA de-
sired adaptation behaviour; (c) to be synchronised
with the modifications performed on SBA adaptation
rules. The latter is also supported by introducing a
REST service, encapsulating functionality to manage
the EPs that need to be detected in this framework.

The following research work directions are
planned: (a) thorough SLO evaluation framework as-
sessment including its various physical distribution
alternatives; (b) comparison of Esper with other CEP
engines to assess which engine is more suitable in our
context; (c) possible extension of the framework to be
configured to exploit any CEP engin via the incorpo-
ration of appropriate abstraction mechanisms.

ACKNOWLEDGEMENTS

This work is supported by the Unicorn project that
has been funded within the European Commissions
H2020 Program under contract number 731846.

REFERENCES

Bahga, A. and Madisetti, V. K. (2013). Performance
evaluation approach for multi-tier cloud applications.
Journal of Software Engineering and Applications,
6(02):74.

Blair, G., Bencomo, N., and France, R. B. (2009). Models@
Run.Time. Computer, 42(10):22–27.

Emeakaroha, V. C., Netto, M. A., Calheiros, R. N., Brandic,
I., Buyya, R., and Rose, C. A. D. (2012). Towards
autonomic detection of sla violations in cloud in-
frastructures. Future Generation Computer Systems,
28(7):1017 – 1029.

Ferry, N., Chauvel, F., Rossini, A., Morin, B., and Sol-
berg, A. (2013). Managing multi-cloud systems with
CloudMF. In NordiCloud, pages 38–45. ACM.

Higashino, W. A. (2016). Complex Event Processing as a
Service in MultiCloud Environments. PhD thesis, The
University of Western Ontario.

Kritikos, K., Domaschka, J., and Rossini, A. (2014). SRL:
A Scalability Rule Language for Multi-cloud Environ-
ments. In CloudCom. IEEE.

Kritikos, K., Zeginis, C., Griesinger, F., Seyold, D., and Do-
maschka, J. (2017). A Cross-Layer BPaaS Adaptation
Framework. In FiCloud. IEEE.

Leitner, P., Inzinger, C., Hummer, W., Satzger, B., and
Dustdar, S. (2012). Application-level performance
monitoring of cloud services based on the complex
event processing paradigm. In SOCA, pages 1–8.
IEEE Computer Society.

CLOSER 2018 - 8th International Conference on Cloud Computing and Services Science

416



Ludwig, H., Stamou, K., Mohamed, M., Mandagere, N.,
Langston, B., Alatorre, G., Nakamura, H., Anya, O.,
and Keller, A. (2015). rSLA: Monitoring SLAs in Dy-
namic Service Environments. In ICSOC, volume 9435
of LNCS, pages 139–153. Springer.

Wu, C., Zhu, Y., and Pan, S. (2013). The sla evaluation
model for cloud computing. In ICCNCE. Atlantis
Press.

Zeginis, C., Kritikos, K., and Plexousakis, D. (2015). Event
pattern discovery in multi-cloud service-based appli-
cations. IJSSOE, 5(4):78–103.

Towards Multi-cloud SLO Evaluation

417


