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Abstract: Feature extraction for pattern recognition is a very common task in image analysis and computer vision. 

Most of the work has been reported for images / image sequences acquired by perspective cameras. This 

paper discusses the algorithms for feature extraction and pattern recognition in images acquired by omni-

directional (fisheye) cameras. Work has been reported using operators in the frequency domain, which in 

the case of fisheye/omnidirectional images involves spherical harmonics. In this paper we review the recent 

literature, including relevant results from our team and state the position that features can be extracted from 

spherical images, by modifying the existing operators in the spatial domain, without the need to correct the 

image for distortions. 

1 INTRODUCTION 

The use of very wide field cameras is becoming very 

wide in domains like security, robotics, involving 

application such as silhouette segmentation, pose 

and activity recognition, visual odometry, SLAM 

and many more. Several types of cameras exist that 

offer 180o field of view (FoV). These cameras are 

often called  spherical, fisheye, or also omni-

directional. The last term is also used for cameras 

with FoV close to 3600, which may cause some 

confusion. We will use the terms interchangeably for 

the rest of the paper. A FoV of 1800 or more, can be 

achieved using dioptric systems (spherical lens), or a 

combination of catadioptric (mirror, parabolic or 

spherical) and dioptric (lens). The 3600 deg FoV 

omnidirectional cameras usually involve two mirrors 

and at least one lens. Both types of images can be 

treated in the same mathematic way, since in both 

cases the resulting images are defined over spherical 

coordinates (θ,φ) . 

The use of this type of cameras is increasing in 

robotic and in video surveillance applications, due to 

the fact that they allow constant monitoring of all 

directions with a single camera. The price to pay is 

the very strong deformation induced by the camera, 

which involves rapid deterioration of spatial resolu-

tion towards the periphery of the FoV. This deforma-

tion has been studied by researchers, using a number 

of different image formation models. In principle, 

straight lines are imaged as conic curves. Thus, the 

images acquired by the fisheye camera are very diffe-

rent than the images acquired by perspective (proje-

ctive) cameras. This induces extra complexity for 

image processing, as well as computer vision tasks. 

In this work, we review some of the prominent 

work on image processing, feature extraction and 

pattern recognition from fisheye images and 

describe our results on a number of relevant tasks, 

using image processing techniques in the spatial 

domain, exploiting the calibration of the camera. 

More specifically, results are presented for: a) 

redefining the Gaussian kernel in the spatial domain, 

without distortion correction, b) redefining Zernike 

moment invariants for calibrated fisheye images and 

applying them for human pose recognition, c) 

employing the camera calibration for human 

silhouette refinement, labelling and tracking and 

finally, d) using the main principles of image 

formation to detect human fall events using a single 

fisheye camera, without requiring exact calibration. 

These results enhance our position that efficient 

image processing and computer vision techniques 

can be achieved in the case of 180 deg FoV images, 

directly on the spatial image domain, without the 

need to employ spherical Fourier Transform, or 

perform distortion correction, or remap the image to 

different grid. 
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2 METHODOLOGY 

2.1 Fisheye Camera Calibration 

Almost all the methods dealing with spherical 

images, assume a correspondence between image 

pixels and direction of view in the real world, 

preferably using the spherical coordinates (azimuth θ 

and elevation φ). This task is achieved by camera 

calibration. Image formation for fisheye is quite 

different than the simple projective (pinhole) 

camera. Several models for fisheye image formation 

have been proposed. In (Li H. and Hartley) and 

(Shah and Aggarwal 1996) the calibration of fisheye 

camera is reported using high degree polynomials to 

emulate the strong deformation introduced by the 

fisheye lens, radial and/or tangential. We have 

proposed a fisheye camera calibration (Delibasis, 

Plagianakos, and Maglogiannis 2014) that exploits 

the spherical reflection – central projection model, 

proposed by (Geyer and Daniilidis, 2001). 

 

Figure 1: The achieved fisheye calibration, by reprojecting 

the floor and a wall, from (Delibasis, Plagianakos, and 

Maglogiannis 2014). 

Further, we describe the inverse fish-eye camera 

model, i.e. obtaining the direction of view for any 

pixel (j,i) in the video frame, by defining two angles: 

the azimuth θ and the elevation φ. These angles are 

precalculated for every pixel of the frame and stored 

in a look-up table to accelerate dependent image 

processing tasks  (Fig. 2). 

  

Figure 2: The azimuth and elevation for a fisheye image, 

from (Delibasis, Plagianakos, and Maglogiannis 2014). 

2.2 Feature Extraction from Spherical 
Images 

In (Hansen, Corke, Boles, Wageeh and Daniilidis, 

2007), the well-known Scale-Invariant Feature 

Transform SIFT image descriptors that were intro-

duced in (Lowe) are redefined for omnidirectional 

images. The implementation is performed in the 

frequency domain. However, since the image forma-

tion model uses spherical optical element and central 

projection, the omnidirectional image is defined over 

the space of spherical coordinates (azimuth θ and 

elevation φ). Thus, the image can be decomposed as 

a weighted sum of spherical harmonic functions 

 ,m

lY    of degree l and order m, with m l . This 

decomposition is often called Spherical Fourier 

Transform (SFT). The Gaussian kernel has been 

defined in the (θ,φ) image domain using spherical 

harmonics of the 0th order (T. Bulow 2004) 
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The Gaussian kernel may be projected on the 

omni-directional image, as shown in Fig. 1 of 

(Hansen, Corke, Boles, Wageeh and Daniilidis, 

2007). However, in that work, the convolution of an 

image defined in the (θ,φ) space is defined in the 

frequency domain, using the SFT, rather than in the 

(θ,φ) space. 

The work of (Cruz-Mota et al 2012) also 

employs the use of SFT to detect points of interest 

using the well-known SIFT. It is very interesting that 

the authors state “we need to pass through the 

spherical 

Fourier domain because convolution on the 

sphere in spatial domain (3D) is hard (almost 

impossible) to compute” 

Others have reported exploiting the image space, 

rather than the frequency domain, for specific 

kernels. In (Andreasson, Treptow, and Duckett, 

(2005)), the authors also used a simplified version of 

SIFT feature extraction method (eg. no multireso-

lution was used) for robot navigation by fisheye 

camera, obtaining good results, however there is no 

mention if the approach is optimal with respect to 

(Cruz-Mota et al 2012). In (Zhao, Feng, Wan, and 

Zhang, (2015)), features are extracted from 360 FoV 

omnidirectional images in the spatial domain, but 

after the image has been mapped to a hexagonal 

grid. In (Hara, Inoue, and Urahama, (2015)), 4-

neighbours and 8-neighbours  Laplacian operators 

have been proposed for omnidirectional panoramic 

images. 
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2.2.1 Geodesic Distance Metric between 
Pixels of the Calibrated Fish-eye Image  

The formation of 180 FoV omni-directional image 

using a spherical lens can be summarized as 

following: the intersection of the line connecting the 

real world point with the center of the optical 

element is calculated with the optical element. This 

intersection is then projected centrally on the image 

sensor plane. It has been shown (Geyer and 

Daniilidis (2001)) that by choosing the center of 

projection, one can simulate the use of any quadratic 

shape mirror (spherical, ellipsoid, paraboloid and 

hyperboloid). This type of image formation induces 

non-linear transformation of distances between 

pixels. 

In (Delibasis et al. 2016) we proposed the 

definition of geodesic distance between pixels, to 

replace the Euclidean distance, normally used for 

projective cameras. More specifically, since the 

geodesic curve of a sphere is a great circle, the 

distance between any two points on a sphere is the 

length of the arc, defined by the two points and 

belonging to the great circle that passes through the 

two points. The great circle has the same centre and 

radius with the sphere. Let v0 and v1 be the position 

vectors pointing to the unit sphere points P0 and P1. 

These points correspond to two pixels of the fisheye 

image. The distance of these two pixels is defined as 

the distance d of points P0 and P1 on the unit sphere 

and can be easily calculated as the arc-length 

between P0 and P1: 

 

 

0 1 0 0 0 0 0

1 1 1 1 1

cos cos ,sin cos ,sin

cos cos ,sin cos ,sin

 



v v     

    
 (2) 

 1

0 1cosd  v v  (3) 

2.2.2 Definition of the Gaussian Kernel for 
Calibrated Fisheye Images 

This distance metric can be applied to redefine the 

Gaussian kernel, by replacing the Euclidean distance 

in the exponent. Thus, a gaussian centered at pixel 

 0 0 0,x yp  can be written as  
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These concepts are visualized in Figure 3, where the 

semi-spherical optical element of unit radius and the 

image plane is displayed. The center of projection is 

placed at –f on the Y axis, with f set to 0.2 (a value 

obtained by the calibration of the actual Q24 

Mobotix camera used in this work). The image plane 

is tessellated into 128 equidistant points to resemble 

the image pixels. 13 of these “pixels” (red dots in 

Fig.3a) are backprojected on the spherical optical 

element (both shown in different color). It is self-

evident that the back-projected points are no longer 

equidistant. 

 

 

Figure 3: The Gaussian kernels generated using 

traditional/ planar and geodesic pixel distance (black and 

red curves respectively). The curves are placed (a) on the 

spherical lens and (b) on the image plane.  

The definition of a Gaussian within the 13-pixel 

window, using the Euclidean distance between 

pixels on the image plane is visualized as the black 

curve in Fig. 3(a). If this Gaussian is back-projected 

on the spherical optical element, the kernel depicted 

in black at the periphery) is produced Fig. 3(a). As 

expected, it is substantially different from a 

Gaussian kernel, due to distance metric. In order to 

generate a Gaussian kernel defined on the image 

sensor, which is symmetric when applied on the 

spherical lens, we have to modify the distance metric 

between pixels on the sensor, according to the 

geodesic distance of their back-projection on the 

spherical lens. 
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2D Gaussian kernels, produced as above are shown 

in Fig. (4), at the center, and towards the periphery 

of the fisheye image. 

 

 

 

Figure 4: 2D Gaussian kernels, produced at the center 

(top) and towards the periphery of the fisheye image 

(bottom). 

2.2.3 Definition of Zernike Moments in 
Calibrated Fish-Eye Image 

Zernike moment invariants (ZMI) have been used 

regularly for pattern recognition in images and video 

sequences. The calculation of Zernike moments 

requires the distance and orientation with respect to 

the centre of the image patch, for each pixel of the 

segmented object / pattern to be classified. If the 

geodesic distance between pixels is used, then the 

ZMI can be calculated for the specific (calibrated) 

fisheye image.  
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The substantial difference between traditional and 

geodesically corrected ZMI for a calibrated fisheye 

image is shown in Figure 5. The position of the 

application of the ZMI is indicated in Figure 5(a) by 

a yellow square.   

 

(a) Fisheye image 

 

(b) Traditional (left) and corrected (right) pixel distance 

metric 

 

(c) The resulting Zernike radial polynomial and angular 

terms 

Figure 5: Differences in the planar (left) and geodetic 

definition (right) of (b) distance and (c) angle between two 

image pixels, from (Delibasis et al. 2016). 

2.2.4 Silhouette Segmentation in Calibrated 
Fish-Eye Image 

In (Delibasis et al. 2014) a refinement for the 

segmentation of human silhouettes was proposed, 
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using spatial relations of the binary objects/parts of a 

segmented silhouette, using clues from the 

calibration of the fisheye camera. Results showed 

that the method was quite robust, as well as 

computationally efficient. Figure 6 shows a 

composite frame with segmented silhouettes (a), as 

well as the estimated trajectory in real world 

coordinates (b).  

 
 

(a) (b) 

Figure 6: Silhouette segmentation and tracking through a 

fisheye camera, from (Delibasis et al. 2014). 

 
 

Figure 7: Real world vertical lines and their rendering 

through a fisheye camera with vertical optical axis, from 

(Delibasis et al. 2015). 

2.2.5 Fall Detection by Uncalibrated  
Fish-eye Camera 

In (Delibasis, and Maglogiannis, (2015)) a simple 

and effective algorithm was proposed to detect 

falling events of humans monitored by fisheye 

camera. Instead of the full calibration of the camera, 

the only requirement was that the camera axis 

should point parallel to the vertical axis. The 

proposed algorithm exploits the model of image 

formation to derive the orientation in the image of 

elongated vertical structures. World lines are imaged 

as parts of curves, which, if extrapolated 

(equivalently extending the 3D vertical lines to 

infinity), will all intersect at the center of the 

camera’s field of view (FoV). Lines parallel to the 

optical axis are rendered as straight lines. Line 

extrapolation is shown in dotted style (Figure 7). 

The floor is drawn as it would appear at z=3.5 

meters from the ceiling where the camera is 

installed. 

The proposed fall detection algorithm consists of 

the following simple steps: 

1. The center of the FoV is detected (offline, for a 

single video frame). 

2. For each video frame: 

2.1. The silhouette is segmented 

2.2. Its major axis is calculated  

2.3. If the silhouette is sufficiently elongated 

and its major axis does not point close to 

the center of FoV, then the silhouette is 

assumed to correspond to a falling person 

3 RESULTS 

The proposed geometry-based silhouette refinement 

algorithm was applied to 5 video sequences. Two 

classes of pixels were considered: pixels that belong 

to human silhouettes inside the room (excluding any 

other activity) and the rest of the pixels. Table 1 

shows the confusion matrix for the segmentation of 

the, with and without the application of the proposed 

algorithm – (1st row true positive -TP, false negative 

pixels -FN, 2nd row: false positive -FP, true negative 

pixels -TN). It can be observed that the number of 

TP and FN pixels remain almost the same with and 

without the application of the geometry-based 

refinement. The number of FP pixels decreases 

significantly, whereas TN increases with the 

application of the proposed algorithm.  

Table 1: The confusion matrix of the human silhouette 

segmentation for 5 videos, with and without the 

application of the proposed geometry-based algorithm 

from (Delibasis et al. 2014). 

Segmentation only Segmentation and 

geometry-based silhouette 

refinement 

172388 21828 

142676 48815108 
 

172109   22085 

23725 48934081 
 

In (Delibasis, et al. 2016), the Zernike Moment 

Invariants (ZMI) for the calibrated fisheye image 

were tested against the traditional ZMI in a problem 

of pose recognition.  Synthetic video frames were 

used for training and testing. Testing was performed 

on real video frames, as well. The achieved results 

for synthetic data (5 different poses) are shown in 

Table 2. The superiority of the proposed ZMI, is 

evident, although marginal. More experimentation 

can be found in (Delibasis, et al. 2016), which 

validates these findings. 
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Table 2: The classification accuracy of the segmented 

silhouette pose for different orders of the traditional radial 

Zernike implementation (Delibasis, et al. 2016).  

Zernike  

Degree n,   

Order m 

Geodesic 

correction 

Classification 

Accuracy (%) 

Video 1 Video 2 

n = 2,4,6,8,10,  

m=0 

NO 93.39  94.53  

YES 94.09 96.13  

n = 2,4,6,8,…,20, 

m=0 

NO 91.68  94.14  

YES 94.24 95.94 

n = 2,4,6,8,…,30, 

m=0 

NO 92.11  94.01  

YES 92.24 95.75 

The proposed algorithm for fall detection has 

been applied to two video sequences containing 5 

fall events, acquired by the fish-eye camera at 15 fps 

frame rate of 480x640 pixels. The confusion matrix 

for both videos is shown in Table 3. 

Table 3: Confusion matrix for fall classification, from 

(Delibasis and Maglogiannis, 2015). 

 
Standing 

Not 

Standing 
Undefined 

Standing 1374 256 388 

Not 

Standing 
513 1684 

 

4 CONCLUSIONS 

A number of image processing and computer vision 

tasks have been presented, applied to images and 

videos acquired by a calibrated fisheye camera. First 

we defined a metric for pixel distances, based on the 

image formation model. Subsequently we applied 

this metric to the definition of the Gaussian kernel, 

as well as to the re-definition of Zernike Moment 

Invariants (ZMI). The corrected ZMI outperformed 

the traditional ones for pose recognition. Two more 

applications, involving silhouette segmentation and 

fall detection, the later one without the requirement 

for full fisheye calibration were reviewed. All these 

fisheye-specific processing tasks were applied to 

spatial domain, without the need to remap the image 

to different grids, or correct for the strong 

distortions. These results support our position, that 

efficient image processing and analysis algorithms 

can be performed directly in the fish-eye image 

domain. Further work includes the application of a 

number of other feature extraction algorithms, such 

as SIFT, Harris corner detection and Hough 

Transform. 
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