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Abstract: Automated in situ plankton image classification is a challenging task. To take advantage of recent progress
in machine learning techniques, a large amount of labeled data is necessary. However, beyond being time
consuming, labeling is a task that may require frequent redoing due to variations in plankton population
as well as image characteristics. Transfer learning, which is a machine learning technique concerned with
transferring knowledge obtained in some data domain to a second distinct data domain, appears as a potential
approach to be employed in this scenario. We use convolutional neural networks, trained on publicly available
distinct datasets, to extract features from our plankton image data and then train SVM classifiers to perform
the classification. Results show evidences that indicate the effectiveness of transfer learning in real plankton
image classification situations.

1 INTRODUCTION

Plankton communities form the basis of aquatic food
webs and exert a major influence on material cycles
relevant to global climate change, such as carbon di-
oxide and methane. Therefore, it is essential to under-
stand the spatial distribution and temporal variability
of planktonic organisms in the ocean. Plankton col-
lection and analysis has been traditionally carried out
by net tows and subsequent microscopic inspection
of preserved samples. Such approach has led to a
significant increase in the knowledge about taxono-
mic composition and distribution of several plankton
groups, but fine-scale sampling is usually not feasible
with nets and many fragile organisms are destroyed
by collision with the net mesh or disintegrate in fixa-
tives.

Recent advances in digital image acquisition and
Machine Learning (ML) techniques have stimulated
the application of in situ imaging to generate highly
resolved vertical profiles of plankton composition and
abundance (counts per volume). While high-quality
image acquisition technologies represent the first step
in such task, new approaches in ML techniques are
in the core of our increasing capability to deal with
the complex and highly variable geometry of plankton
organisms.

Convolutional Neural Networks (CNN) have
emerged as a powerful technique for image classifica-
tion and its variants are being successfully employed
on a variety of classification tasks. The characteristic
of being data-driven, not requiring specifically desig-
ned features, make them a suitable model to cope with
the high variability of plankton species distribution in
space and time. However, the training success of such
models depends not only on experimentation and ad-
justment of parameter values but on the availability of
large amount of training data. This is a critical point
in supervised learning tasks such as classification.

There have been some efforts to make available
labeled plankton image datasets. The International
Council for the Exploration of the Sea (ICES)
initiative, http://www.ices.dk/marine-data/dataset-
collections/Pages/Plankton.aspx and the Kaggle’s
National DataScience Bowl (NDSB) competition, via
the In Situ Icthyoplankton Imaging System (ISIIS),
https://www.kaggle.com/c/datasciencebowl, are a
few of the examples. These datasets may differ lar-
gely with respect to plankton composition and image
quality. Diversity may originate from differences in
locations (geographical and along the water column),
in imaging technologies which may target plankton
of different size ranges, or even in the goals of the
research project. Due to those differences, available
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datasets may not be directly useful to the application
context of a given research program. At the same
time, labeling a large amount of data each time a set
of observations with new characteristics is available
is unfeasible.

One approach to deal with these types of situati-
ons is transfer learning (TL) (Pan and Yang, 2010).
In ML1, TL expresses the concept of using or adap-
ting a model induced in a specific context to another
context. For instance, using or adapting a model le-
arned using a plankton dataset from Atlantic ocean to
classify another one from the Pacific ocean.

In this work we investigate TL applied to plankton
classification. Our goal is to develop an algorithm to
classify samples in our in-house dataset. Since we fo-
resee different deployment scenarios in the future, we
would like to have a data-driven classification appro-
ach. Therefore, CNNs appear as an interesting option
except by the fact that the small size of our dataset
makes training such a model from scratch an unfea-
sible task and thus we resort to adapt pre-trained mo-
dels as feature extractors. Taking advantage of the
fact that there exists a public available massive data-
set of plankton images used in previously mentioned
Kaggle’s NDSB competition, our approach is to train
a CNN, specifically the one proposed by the winning
team, using this dataset to extract meaningful featu-
res from our smaller in-house built dataset. Although
there are differences in the datasets with respect to
the classes of plankton species they include, either
because a particular species or class in one of the da-
tasets is not in the other , it is reasonable to expect
that they could be efficiently classified by the same
set of features. To further investigate the quality of
the features obtained from this process, we also em-
ploy a different CNN trained on this same dataset and
on ImageNet (Russakovsky et al., 2015), which con-
tains images from a completely distinct domain. By
using CNNs and external domain source datasets, we
would like to understand how transfer learning per-
forms and whether an external dataset will help or not
the classification of our data.

Plankton image classification using CNNs star-
ted to be considered only recently (Al-Barazanchi
et al., 2015; Dai et al., 2016; Py et al., 2016) and, in
particular, transfer learning of features computed by
CNNs (Orenstein and Beijbom, 2017) has not been
explored much yet in this context. The present con-
tribution aims to deepen our understanding of transfer
learning in planktonic data.

The remaining of the text is organized as follows.
In Section 2 we briefly recall the transfer learning for-

1The concept is used in Psychology and Education Re-
search, as well.

mulation and outline the methods to be used in our ex-
periments. In Section 3 we describe the datasets and
CNN models to be used. Then, in Section 4 we detail
the experiments and discuss the results. We present
the conclusions of this work in Section 5.

2 METHOD OVERVIEW

Given an input space of observations, denoted as X ,
and a set of class labels, denoted as Y , classification
can be modeled as the problem of predicting a class
label y for each instance x in X . Assuming there is
a joint probability distribution p on X ×Y , the mini-
mum error classification can be determined from the
conditional probabilities p(y|x). Discriminative ap-
proaches in supervised machine learning often tries,
for each input x, to approximate their outputs to the
probabilities p(y|x).

In classification, X defines a domain and Y defines
a task. Elements in X usually consist of convenient
encodings of objects to be classified and set Y consists
of the corresponding class labels for each element in
X . For instance, X could represent the feature vec-
tors extracted from plankton images and set Y could
be a set of numbers representing the taxonomy of the
different species of plankton.

In many situations, there is no sufficient amount
of labeled data to train a classifier in a given target
domain. Among the approaches used to handle this
type of situation, there is for instance data augmenta-
tion (Simard et al., 2003), transfer learning (Pan and
Yang, 2010), and bootstrap methods (Hastie et al.,
2009). Transfer learning refers to using knowledge
obtained from a distinct domain data, and possibly
distinct task, to learn the conditional probability dis-
tribution of the target domain.

Representations learned by CNNs are reported to
be very useful for the classification of data, even
in distinct domains (Bengio, 2012; Yosinski et al.,
2014). The usual approach to exploit this is to select
an intermediate layer as a target layer, freeze it and
its preceding layers and adjust the subsequent layers.
The earlier the layer chosen, the more general and the-
refore, more transferable the representation is (Yosin-
ski et al., 2014), but also the more data is necessary
to adjust it, since it has a higher dimension. The ad-
justment of subsequent layers may be done via fine-
tuning, continuing training with new samples, or by
training an entirely new classifier from scratch using
the output of the intermediate target layer as features,
which is called (deep) feature extraction. In this work
we chose the latter option, using pre-trained CNNs as
feature extractors.
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The experiments have been designed to answer the
following questions:

• how DeepSea trained on ISIIS (NDSB competi-
tion) – DeepSea(ISIIS) – will perform on our in-
house dataset (LAPSDS)?

• how classifiers using features extracted from
DeepSea(ISIIS) will perform on LAPSDS?

• how classifiers using features extracted from
AlexNet trained on ISIIS – AlexNet(ISIIS) – will
perform on LAPSDS?

• how classifiers using features extracted
from AlexNet trained on ImageNet – Alex-
Net(ImageNet) – will perform on LAPSDS?

In addition to these TL scenarios, we also con-
sider the traditional feature extraction approach that
will serve as a baseline. Diagram in Fig. 1 summari-
zes the scenarios to be evaluated. Four sets of features
are extracted from LAPSDS and they are used to train
SVM classifiers as detailed ahead in Section 4.

ISIIS

train DeepSea

DeepSea(ISIIS)

apply

CNN feature
extraction

F1

train AlexNet

AlexNet(ISIIS)

apply

CNN feature
extraction

F2

ImageNet

train AlexNet

AlexNet(ImageNet)

apply

CNN feature
extraction

F3

LAPSDS

shape feature
extraction

F4

Figure 1: Deep feature extraction scenarios considered
here. ISIIS ImageNet and LAPSDS denote image datasets,
gray shaded nodes indicate the pre-trained CNNs, and CNN
feature extraction consists of extracting the values from a
specific layer of a CNN, after a forward pass of samples in
LAPSDS.

3 DATASETS AND CNN MODELS

In this section, we describe the datasets and the two
chosen CNN models used in the experiments.

3.1 Datasets

3.1.1 LAPS Dataset (LAPSDS)

In situ plankton images have been acquired with a
submersible instrument developed at our lab LAPS-
IOUSP2. The instrument has been vertically deployed
between surface and 30m depth off the lab base3 and
gray-scale images were acquired at approximately 15
frames per second, with dimensions of 2448× 2050
pixels and resolution of ∼5µm. Image stacks belon-
ging to the same vertical profile were converted into
video files to mitigate data storage and management.
A total of 230,000 Regions of Interest (ROI) were ex-
tracted from 16 selected videos and 5175 ROIs were
used in the creation of in-house dataset. A labeling
process was carried by plankton experts belonging to
the same lab.

LAPSDS is composed of 20 classes containing at
least 100 samples each, and as expected, the number
of images varies from class to class. Table 1 shows the
class distribution of the dataset, as well as the name
and the identifier number of each class. Instances of
some of the classes are shown in Fig. 2.

Table 1: Histogram of classes of the LAPSDS.

ID H classes Size ID H classes Size
0 appendicularia 216 10 detritus uf 286

shape s stick bw
1 appendicularia 114 11 dinoflagellates 242

curve tripus 2
2 cladocera 435 12 dinoflagellates 316

tripus
3 copepod calanoid 315 13 nauplii 465
4 copepod cyclopoida 106 14 phytoplankton 0 259
5 copepod 163 15 phytoplankton 1 127

poecilostomatoida
6 detritus df bk 288 16 phytoplankton 5 159
7 detritus uf dot bk 344 17 chaetocero 546
8 detritus uf dot bw 274 18 diatoms 120

coscinodiscus
9 detritus uf stick bk 152 19 shadow 249

In-situ images are prone to natural variability in
illumination, turbulent flow and turbidity, among ot-
her factors, which may compromise image quality be-
cause ROIs from different videos may have different
background intensities (see Fig.2). Thus, for conve-
nience, the background of the ROIs have been re-
moved using a technique of background subtraction
adapted to deal with illumination changes (Jacques
et al., 2006). An example is shown in Fig. 3.

2Laboratory of Plankton Systems, Oceanographic Insti-
tute, University of São Paulo, Brazil

3(lat:-23.499913, long:-45.119381)
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Figure 2: Image sample from LAPSDS. Number on the ROI
indicates the class that they belong to.

(a) (b)
Figure 3: Background removal example: (a) Original
image, labeled as “appendicularia shape s” and (b) result
of the background removal of image in (a).

3.1.2 Kaggle’s National Data Science Bowl

The National Data Science Bowl (NDSB) was a com-
petition hosted by Kaggle in a collaboration with Ore-
gon State University’s Hatfield Marine Science Cen-
ter. Several research teams competed to develop and
train supervised classifiers, given a dataset provided
by the Hatfield Marine Science Center(Cowen et al.,
2015).

According to the competition organizers, the ima-
ges were collected in the Straits of Florida using
an underwater imaging system called ISIIS (In Situ
Ichthyoplankton Imaging System). It captured high-
resolution continuous images that were parsed in
2048x2048 pixel frames. The resulting frames were
thresholded and segmented. Finally, regions of inte-
rest were extracted and became the images that com-
prise the dataset after being annotated by the Marine
Science Center’s personnel.

The dataset was divided by taxonomy, behavior
and shape into 121 classes. Each class contained
between 9 and 1979 individual examples, totalizing
30,336 images.

3.1.3 ImageNet

ImageNet is a dataset that became one of the ben-
chmarks for object classification and detection. It

.
Figure 4: Assorted plankton from the ISIIS dataset. Each
sample is from a different class. Note the absence of back-
ground.

.

is comprised of over 14 million images divided into
1000 classes hierarchically subdivided (Russakovsky
et al., 2015). The classes subjects range from human
persons to animals and fungi to everyday objects, con-
stituting a very general dataset. Since 2010 a competi-
tion including diverse tasks such as classification and
detection on pictures or video on this dataset is held
each year.

3.2 CNN MODELS

The two network architectures used in this work are
from winning teams in computer vision competitions.
They are the AlexNet (Krizhevsky et al., ), from the
2012 ImageNet Large Scale Visual Recognition Com-
petition (ILSVRC), and a model from the ”Deep Sea”
team, that won Kaggle’s ISIIS in 2014.

3.2.1 AlexNet

AlexNet is a Convolutional Neural Network model
that was introduced in the ILSVRC held in 2012. Un-
der the team name of ”SuperVision”, it won both the
classification and localization tasks by a large mar-
gin4, being the first case of success in applying this
kind of model in the competition and establishing a
strong trend of its use in the next years.

This model introduced and popularized a lot of
novelty features for improving training time, perfor-
mance and reducing overfitting including, but not li-
mited to: ReLU , Dropout and Local Response Nor-
malization. We refer to the original paper for a more

4http://image-net.org/challenges/LSVRC/2012/results
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(a) AlexNet

(b) DeepSea’s convroll4 network
Figure 5: Neural Networks architectures used in the experiments. Although DeepSea’s model is much deeper than AlexNet,
it has less parameters (i.e. filters in Convolutional layers and units in Fully Connected layers) to fit during the training. The
dashed boxes indicate which layer was used in the transfer learning experiments.

detailed explanation of these innovations and their im-
pact (Krizhevsky et al., ) (see Fig. 5(a) for a represen-
ting diagram of the CNN).

We did not explicitly train AlexNet model in the
ImageNet dataset, but used instead a pre-trained mo-
del with available weights online 5. In order to feed
our images to this model, a couple minor modifi-
cations were required, such as converting our one-
channel grayscale images to three-channels RGB and
resizing, via a wrap padding tactic, to match the ex-
pected input.

AlexNet implementation that was trained on ISIIS
dataset was heavily based on DeepSea’s model, fol-
lowing exactly the same training procedure for both
networks (i.e. data preprocessing and data augmen-
tation). Thus, this network’s input expects grayscale
images with size 95x95 and its final layer contains
121 units.

3.2.2 Deep Sea’s Model

Deep Sea was the winning team of the Kaggle ISIIS.
They used an approach of ensembling multiple deep
learning models with minor differences to improve
generalization. We used the most simple model avai-
lable, consisting solely of a CNN, which here we call
DeepSea.

The main innovation brought by the team was a
couple of layers designed to increase the network ro-
bustness to cyclic variation (Dieleman et al., 2016). In
the ”cyclic slice” layer the input is rotated four times
and processed separately by the network from that
point onward. Then, in the ”cyclic roll” layer, the fea-
ture maps from the four paths are permuted and inter-
changed. Eventually, in the ”cyclic pooling” layer the
four network paths are merged again into a single one.
We again refer to the paper on this architecture for
a more detailed explanation (Dieleman et al., 2016)
(see Fig. 5(b) for a representing diagram of the CNN).

5https://github.com/BVLC/caffe/tree/master/models/bv
lc alexnet

4 EXPERIMENTS AND
DISCUSSION

Experiments followed the outline presented in
Section 2. Given a pre-trained CNN, the steps to be
executed consist of feature extraction, classifier trai-
ning, and classifier performance evaluation. We des-
cribe these steps in the subsequent sections and at the
end we present some discussions.

4.1 Feature Extraction

4.1.1 Deep Features

From DeepSea(ISIIS). The features were extracted
from the output of the last Cyclic Pooling Layer, as
shown in Figure 5(b) highlighted by enclosing das-
hed lines, resulting in 256 features per images. These
features correspond to F1 in the diagram of Fig. 1.
In a Cyclic Pooling Layer the effect of rotations intro-
duced by previous Cyclic Slice and Cyclic Roll layers
are undone, hence capturing the output from this layer
is the most appropriate choice since we can leverage
on the learned invariances.

From AlexNet(ISIIS) and AlexNet(ImageNet).
From the two pre-trained AlexNet, AlexNet(ISIIS)
and AlexNet(ImageNet), features were extracted from
the first Fully Connected layer, as shown in Fi-
gure 5(a) highlighted by enclosing dashed lines, re-
sulting in 4096 features per image. These features
correspond to F2 and F3, respectively, in the diagram
of Fig. 1.

4.1.2 Shape Features

We extracted 74 features commonly used in traditio-
nal shape recognition procedures. They are divided
into the following three categories:
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• 54 shape features (area, perimeter, solidity, con-
vexity, etc). Most of the feature descriptors are
implemented in the OpenCV library and they are
usually presented in automatic plankton classifi-
cation works that use shape features (Blaschko
et al., 2005).

• 10 from Local Binary Patterns (LBP) histo-
grams (Ojala et al., 2000) extracted using a 3× 3
window.

• 10 from Haralick descriptors, extracted from the
co-occurrence matrix (Haralick et al., 1973).
Shape and LBP features are extracted from the

images segmented using Otsu’s threshold (Otsu,
1979). Haralick’s descriptors are extracted from gray-
level images. These features correspond to F4 in the
diagram of Fig. 1.

4.2 Classifier Training and Evaluation

To train and evaluate the SVM classifiers with respect
to each of the four feature sets, we performed a 9:1
train-test split that preserved class proportions. This
split resulted in a training set of 4658 and a test set of
517 samples.

Before training, a data normalization to convert
all feature values to the [0.0,1.0] range was applied
to each individual feature of the four feature sets. The
normalization parameters were inferred using the trai-
ning samples in order to not add bias to the classifier.
Test samples were then transformed by those same pa-
rameters.

Sklearn’s (Pedregosa et al., 2011) grid search with
cross-validation was employed to explore the space of
possible parameters for SVM, namely the kernel type,
value of C and, if a RBF kernel was used, γ values. In
this work, we considered linear and RBF kernels, C ∈
{1,10,100,200} and γ ∈ {0.01,0.001,0.0001, 1

n f },
where n f is the number of features, this is a common
well-known heuristics. The best parameters found for
each feature set are displayed on Table 2. The same
table also shows the overall accuracies computed on
test set.

Table 2: Table summarizing the results obtained from dif-
ferent transfer learning scenarios. The value of 0.0002 for
γ was selected because of the 1

n f option. Accuracy refers to
the test set.

Feature extractor SVM parameters Acc.kernel C γ
DeepSea(ISIIS) rbf 100 0.01 84%
AlexNet(NSDB) rbf 10 0.01 81%

AlexNet(ImageNet) rbf 100 0.0002 80%
Shape Features linear 100 - 72%

4.3 Discussions

Global accuracy alone, specially in cases as ours,
where the methods present similar performance, is not
much informative. To better understand the results,
we plotted a confusion matrix (Fig. 6) for each fea-
ture set.

As it can be seen, the first plot corresponding to
DeepSea(ISIIS), the one that achieved the best per-
formance, has a darker diagonal compared to the ot-
her plots. Confusion is larger in the last plot, the
one that is based on shape features. In general,
there is confusion between class 3 (copepod calanoid)
and classes 4 (copepod cyclopoida) and 5 (cope-
pod poecilostomatoida), between classes 7 (detri-
tus uf dot bk) and 8 (detritus uf dot bw), and be-
ween classes 9 (detritus uf skick bk) and 10 (detri-
tus uf stick bw). Figure 7(a) presents some examples
of copepods subtypes that can confuse the classifiers.
The figure is organized in three columns, one for each
copepod subtype: column 1 shows four examples of
calanoids, column 2 shows three examples of cyclo-
poida, column 3 shows four examples of poecilosto-
matoids. Each image is labeled with zero to four co-
lored squares that represent the success of the corre-
sponding classifier in classifying correctly that image.
As one can see, the plankton belonging to these clas-
ses are similar in several aspects and it is not difficult
to understand why these classes cause confounding
errors. A similar scenario has been found for detrital
particles. Figure 7(b) presents a similar set of images
of examples of detritus subtypes (detritus uf dot bk
and detritus uf dot bw) that can confuse the classi-
fiers.

Another view of the results is shown in Fig. 8. We
present a bar chart displaying the accuracy of each
classifier per class. Classes 2, 11, 12, 13 and 18 were
well classified by all the four classifiers and therefore
they could be considered as the easy classes. On the
other hand, classes 4 and 9 are those where most clas-
sifiers did poorly, and thus they are the hardest ones.
Classes 0 and 1 are those with the largest variation
between the best and worst performing classifiers.

Hand designed features performed clearly worse
than any of the CNN extracted ones. Although no
careful feature selection was performed, it is also true
that no careful deep feature extraction was performed.
Thus, in a situation where a quick solution is required,
making use of a pre-trained CNN could be more ef-
fective than using a large set of hand designed feature
extractors.
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Figure 6: Confusion Matrices.

(a) Cyclopoida, Calanoid, Poecilostomatoida (b) uf dot bk, uf dot bw
Figure 7: Two sets of plankton images from confounding classes.

Figure 8: Class accuracy histogram.

5 CONCLUSIONS

We have presented an evaluation of transfer learning
scenarios in the context of plankton image classifica-
tion. We have used CNNs pre-trained on external da-
tasets as feature extractors from our in-house dataset
images. In particular, we have considered two very
distinct external datasets, one of plankton images (and
thus similar to our data) and another of natural images
(ImageNet), and the corresponding “winning” CNN
architectures. Transfer learning experiments showed

that the architecture developed for plankton images
(DeepSea) performed better than the architecture de-
veloped for natural image classification (AlexNet),
even when both were trained with the same plankton
image dataset. We also observed that AlexNet trai-
ned on natural images performed almost as well as the
same network trained on plankton images. These two
observations indicate that in transfer learning using
CNNs, the architecture may play an important role,
even larger than the dataset per se. To complement
these observations, it would be interesting to train
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DeepSea with ImageNet and evaluate how well it will
perform on our data.

Overall, our conclusion is that transfer learning
using CNNs as feature extractors might be an ef-
fective approach to cope with large scale and high
variability of plankton images. However the optimal
choice of external datasets and network architectures
are still not well understood and should be further in-
vestigated in order to push up the accuracy. For fu-
ture works we plan to experiment with ensemble of
classifiers, as already done by DeepSea team and also
do data augmentation by blurring the well focused
images in a way that resembles the bad focused ones
(classifiers usually do not perform well when classi-
fying images with this kind of problem).
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